

Documentation for flux-core

flux-core Manual Pages

	man1
	flux-broker(1)

	flux-content(1)

	flux-cron(1)

	flux-dmesg(1)

	flux-env(1)

	flux-event(1)

	flux-exec(1)

	flux-getattr(1)

	flux-hwloc(1)

	flux-job(1)

	flux-jobs(1)

	flux-jobtap(1)

	flux-keygen(1)

	flux-kvs(1)

	flux-logger(1)

	flux-mini(1)

	flux-module(1)

	flux-ping(1)

	flux-proxy(1)

	flux-start(1)

	flux-shell(1)

	flux-version(1)

	flux(1)

	man3
	flux_attr_get(3)

	flux_aux_set(3)

	flux_child_watcher_create(3)

	flux_content_load(3)

	flux_core_version(3)

	flux_event_decode(3)

	flux_event_publish(3)

	flux_event_subscribe(3)

	flux_fatal_set(3)

	flux_fd_watcher_create(3)

	flux_flags_set(3)

	flux_future_and_then(3)

	flux_future_create(3)

	flux_future_get(3)

	flux_future_wait_all_create(3)

	flux_get_rank(3)

	flux_get_reactor(3)

	flux_handle_watcher_create(3)

	flux_idle_watcher_create(3)

	flux_kvs_commit(3)

	flux_kvs_copy(3)

	flux_kvs_getroot(3)

	flux_kvs_lookup(3)

	flux_kvs_namespace_create(3)

	flux_kvs_txn_create(3)

	flux_log(3)

	flux_msg_cmp(3)

	flux_msg_encode(3)

	flux_msg_handler_addvec(3)

	flux_msg_handler_create(3)

	flux_open(3)

	flux_periodic_watcher_create(3)

	flux_pollevents(3)

	flux_reactor_create(3)

	flux_watcher_now(3)

	flux_recv(3)

	flux_request_decode(3)

	flux_request_encode(3)

	flux_requeue(3)

	flux_respond(3)

	flux_response_decode(3)

	flux_rpc(3)

	flux_send(3)

	flux_shell_add_completion_ref(3)

	flux_shell_add_event_context(3)

	flux_shell_add_event_handler(3)

	flux_shell_aux_set(3)

	flux_shell_current_task(3)

	flux_shell_get_flux(3)

	flux_shell_get_info(3)

	flux_shell_get_jobspec_info(3)

	flux_shell_getenv(3)

	flux_shell_getopt(3)

	flux_shell_killall(3)

	flux_shell_log(3)

	flux_shell_plugstack_call(3)

	flux_shell_rpc_pack(3)

	flux_shell_service_register(3)

	flux_shell_task_channel_subscribe(3)

	flux_shell_task_get_info(3)

	flux_shell_task_subprocess(3)

	flux_signal_watcher_create(3)

	flux_stat_watcher_create(3)

	flux_sync_create(3)

	flux_timer_watcher_create(3)

	flux_watcher_start(3)

	idset_create(3)

	idset_encode(3)

	idset_add(3)

	flux_jobtap_get_flux(3)

	man5
	flux-config-bootstrap(5)

	man7
	flux-broker-attributes(7)

	flux-jobtap-plugins(7)

flux-core Python Bindings

	python
	flux package
	Subpackages
	flux.core package
	Submodules
	flux.core.handle module

	flux.core.inner module

	flux.core.trampoline module

	flux.core.watchers module

	flux.job package
	Subpackages
	flux.job.validator package
	Submodules
	flux.job.validator.validator module

	Submodules
	flux.job.JobID module

	flux.job.Jobspec module

	flux.job.event module

	flux.job.executor module

	flux.job.info module

	flux.job.kill module

	flux.job.kvs module

	flux.job.list module

	flux.job.stats module

	flux.job.submit module

	flux.job.wait module

	flux.resource package
	Submodules
	flux.resource.ResourceSet module

	flux.resource.ResourceSetImplementation module

	flux.resource.Rlist module

	Submodules
	flux.constants module

	flux.debugged module

	flux.future module

	flux.hostlist module

	flux.idset module

	flux.kvs module

	flux.memoized_property module

	flux.message module

	flux.progress module

	flux.rpc module

	flux.security module

	flux.util module

	flux.wrapper module

Indices and tables

	Index

	Module Index

	Search Page

man1

General Commands

	flux-broker(1)

	flux-content(1)

	flux-cron(1)

	flux-dmesg(1)

	flux-env(1)

	flux-event(1)

	flux-exec(1)

	flux-getattr(1)

	flux-hwloc(1)

	flux-job(1)

	flux-jobs(1)

	flux-jobtap(1)

	flux-keygen(1)

	flux-kvs(1)

	flux-logger(1)

	flux-mini(1)

	flux-module(1)

	flux-ping(1)

	flux-proxy(1)

	flux-start(1)

	flux-shell(1)

	flux-version(1)

	flux(1)

flux-broker(1)

SYNOPSIS

flux-broker [OPTIONS] [initial-program [args...]]

DESCRIPTION

flux-broker(1) is a distributed message broker daemon that provides
communications services within a Flux instance. It may be
launched as a parallel program under Flux or other resource managers
that support PMI.

Resource manager services are implemented as dynamically loadable
modules.

Brokers within a Flux instance are interconnected using
ZeroMQ sockets, and each is assigned a rank from 0 to size - 1.
The rank 0 node is the root of a tree-based overlay network.
This network may be accessed by Flux commands and modules
using Flux API services.

A logging service aggregates Flux log messages across the instance and
emits them to a configured destination on rank 0.

After its overlay network has completed wire-up, flux-broker(1)
starts the initial program on rank 0. If none is specified on
the broker command line, an interactive shell is launched.

OPTIONS

	-h, --help

	Summarize available options.

	-v, --verbose

	Be annoyingly chatty.

	-S, --setattr=ATTR=VAL

	Set initial value for broker attribute.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-broker-attributes(7)

flux-content(1)

SYNOPSIS

flux content load [--bypass-cache] blobref

flux content store [--bypass-cache]

flux content flush

flux content dropcache

DESCRIPTION

Each Flux instance implements an append-only, content addressable
storage service, which stores blobs of arbitrary content under
message digest keys termed "blobrefs".

flux content store accepts a blob on standard input, stores it,
and prints the blobref on standard output.

flux content load accepts a blobref argument, retrieves the
corresponding blob, and writes it to standard output.

After a store operation completes on any rank, the blob may be
retrieved from any other rank.

The content service includes a cache on each broker which improves
scalability. The flux content flush command initiates store requests
for any dirty entries in the local cache and waits for them to complete.
This is mainly used in testing. The flux content dropcache command
drops all non-essential entries in the local cache; that is, entries
which can be removed without data loss.

OPTIONS

	-b, --bypass-cache

	Bypass the in-memory cache, and directly access the backing store,
if available (see below).

BACKING STORE

The rank 0 cache retains all content until a module providing
the "content.backing" service is loaded which can offload content
to some other place. The content-sqlite module provides this
service, and is loaded by default.

Content database files are stored persistently on rank 0 if the
persist-directory broker attribute is set to a directory name for
the session. Otherwise they are stored in the directory defined
by the rundir attribute and are cleaned up when the instance terminates.

When one of these modules is loaded, it informs the rank 0
cache of its availability, which triggers the cache to begin
offloading entries. Once entries are offloaded, they are eligible
for expiration from the rank 0 cache.

To avoid data loss, once a content backing module is loaded,
do not unload it unless the content cache on rank 0 has been flushed
and the system is shutting down.

CACHE EXPIRATION

The parameters affecting local cache expiration may be tuned with
flux-setattr(1):

	content.purge-target-size

	The cache is purged to bring the sum of the size of cached blobs less
than or equal to this value
(default 16777216)

	content.purge-old-entry

	Only entries that have not been accessed in old-entry seconds
are eligible for purge (default 10).

Expiration becomes active on every heartbeat. Dirty or invalid entries are
not eligible for purge.

CACHE ACCOUNTING

Some accounting info for the local cache can be viewed with flux-getattr(1):

	content.acct-entries

	The total number of cache entries.

	content.acct-size

	The sum of the size of cached blobs.

	content.acct-dirty

	The number of dirty cache entries.

	content.acct-valid

	The number of valid cache entries.

CACHE SEMANTICS

The cache is write-through with respect to the rank 0 cache;
that is, a store operation does not receive a response until it
is valid in the rank 0 cache.

The cache on rank 0 is write-back with respect to the backing store,
if any; that is, a store operation may receive a response before
it has been stored on the backing store.

The cache is hierarchical. Rank 0 (the root of the tree based
overlay network) holds all blobs stored in the instance.
Other ranks keep only what a they heuristically determine to
be of benefit. On ranks > 0, a load operation that cannot be fulfilled
from the local cache is "faulted" in from the level above it.
A store operation that reaches a level that has already cached the
same content is "squashed"; that is, it receives a response without
traveling further up the tree.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

RFC 10: Content Store [https://github.com/flux-framework/rfc/blob/master/spec_10.rst]

flux-cron(1)

SYNOPSIS

flux cron COMMAND [OPTIONS]

DESCRIPTION

The Flux cron service offers an interface for executing commands on
triggers such as a time interval or Flux events. The service is
implemented as a Flux extension module which, when loaded, manages
a set of cron entries and uses the built-in broker.exec service to run
a command associated with the entry each time the defined trigger is
reached. As with flux-exec(1), these tasks run as direct children
of the flux-broker and run outside of the control of any loaded
job scheduling service.

The flux-cron(1) utility offers an interface to create, stop, start,
query, and destroy these entries in the Flux cron service.

For a detailed description of the cron service operation and how
it executes tasks, see the OPERATION and TASK EXECUTION sections
below.

COMMANDS

	help cmd

	Print help. If cmd is provided, print help for that sub-command.

	sync [--epsilon=delay] [topic]

	Query and modify the current sync-event behavior for the cron module.
If a sync-event is set, the cron module will defer all task execution
until an event matching the sync-event topic is received. With --epsilon
the cron module will not delay task execution if the task is normally
scheduled to run within delay of the matching event. Without any
topic supplied on command line, flux cron sync displays the current
setting for sync. If a task is deferred due to sync-event, the
stats.deferred statistic is incremented.

	interval [OPTIONS] interval command

	Create a cron entry to execute command every interval, where interval
is an arbitrary floating point duration with optional suffix s for
seconds, m for minutes, h for hours and d for days.
Options:

	--name=STRING; -n STRING

	Set a name for this cron entry to STRING.

	--after=TIME; -a TIME

	The first task will run after a delay of TIME instead of interval.
After the first task the entry will continue to execute every interval.

	--count=N; -c N

	The entry will be run a total of N times, then stopped.

	--options=LIST; -o LIST

	The --options option allows a comma separated list of extra options to be
passed to the flux-cron service. See EXTRA OPTIONS below.

	--preserve-env; -E

	The --preserve-env option allows the current environment to be exported
and used for the command being executed as part of the cron job. Normally,
the broker environment is used.

	--working-dir=DIR; -d DIR

	The --working-dir option allows the working directory to be set for the command
being executed as part of the cron job. Normally, the working directory of
the broker is used.

	event [OPTIONS] topic command

	Create a cron entry to execute command after every event matching topic.

	--name=STRING; -n STRING

	Set a name for this cron entry to STRING.

	--nth=N; -n N

	If --nth is given then command will be run after each N events.

	--count=N; -c N

	With --count, the entry is run N times then stopped.

	--after=N; -a N

	Run the first task only after N matching events. Then run every event
or N events with --nth.

	--min-interval=T; -i T

	Set the minimum interval at which two cron jobs for this event will be run.
For example, with --min-interval of 1s, the cron job will be at most run
every 1s, even if events are generated more quickly.

	--options=LIST; -o LIST

	Set comma separated EXTRA OPTIONS for this cron entry.

	--preserve-env; -E

	The --preserve-env option allows the current environment to be exported
and used for the command being executed as part of the cron job. Normally,
the broker environment is used.

	--working-dir=DIR; -d DIR

	The --working-dir option allows the working directory to be set for the command
being executed as part of the cron job. Normally, the working directory of
the broker is used.

	tab [OPTIONS] [file]

	Process one or more lines containing crontab expressions from file
(stdin by default) Each valid crontab line will result in a new cron
entry registered with the flux-cron service. The cron expression format
supported by flux cron tab has 5 fields: minutes (0-59), hours
(0-23), day of month (1-31), month (0-11), and day of week (0-6).
Everything after the day of week is considered a command to be run.

	--options=LIST; -o LIST

	Set comma separated EXTRA OPTIONS for all cron entries.

at [OPTIONS] string command
Run command at specific date and time described by string

	--options=LIST; -o LIST

	Set comma separated EXTRA OPTIONS for all cron entries.

	--preserve-env; -E

	The --preserve-env option allows the current environment to be exported
and used for the command being executed as part of the cron job. Normally,
the broker environment is used.

	--working-dir=DIR; -d DIR

	The --working-dir option allows the working directory to be set for the command
being executed as part of the cron job. Normally, the working directory of
the broker is used.

	list

	Display a list of current entries registered with the cron module and
their current state, last run time, etc.

	stop id

	Stop cron entry id. The entry will remain in the cron entry list until
deleted.

	start id

	Start a stopped cron entry id.

	delete [--kill] id

	Purge cron entry id from the flux-cron entry list. If --kill is used,
kill any running task associated with entry id.

	dump [--key=KEY] id

	Dump all information for cron entry id. With --key print only the value
for key KEY. For a list of keys run flux cron dump ID.

EXTRA OPTIONS

For flux-cron commands allowing --options, the following EXTRA OPTIONS
are supported:

	timeout=N

	Set a timeout for tasks invoked for this cron entry to N seconds, where
N can be a floating point number. Default is no timeout.

	rank=R

	Set the rank on which to execute the cron command to R. Default is rank 0.

	task-history-count=N

	Keep history for the last N tasks invoked by this cron entry. Default is 1.

	stop-on-failure=N

	Automatically stop a cron entry if the failure count exceeds N. If N is
zero (the default) then the cron entry will not be stopped on failure.

OPERATION

The Flux cron module manages the set of currently configured cron
jobs as a set of common entries, each with a unique ID supplied by
a global sequence number and set of common attributes, options, and
statistics. Basic attributes of a cron job include an optional name,
the command to execute on the entry's trigger, the current state of
the cron entry (stopped or not stopped), a repeat count indicating the
total number of times to execute the cron job before stopping, and the
type of entry.

All cron entries also support a less common list of options, which may
be set at creation time via a comma-separated list of option=value
parameters passed to the -o, --option=OPTS. These options are described
in the EXTRA OPTIONS section at the end of this document.

Currently, flux-cron supports only two types of entries. The interval
entry supports executing a command once every configured duration,
optionally starting after a different time period. More detailed
information about the interval type can be found in the documentation for
the flux-cron interval command above. The event type entry supports
running a command once every N events matching the configured event topic.
More information about this type can be found in the documentation for
flux cron event.

The Flux cron module additionally keeps a common set of statistics for
each entry, regardless of type . These include the creation time, last
run time, and last time the cron entry was "started", as well a count of
total number of times the command was executed and a count of successful
and failed runs. Currently, the stats for a cron entry may be viewed via
the flux cron dump subcommand stats.* output.

When registered, cron entries are automatically started, meaning they
are eligible to run the configured command when the trigger condition
is met. Entries may be stopped, either by use of the flux cron stop
command, or if a stop-on-failure value is set. Stopped entries are
restarted using flux cron start, at which point counters used for
repeat and stop-on-failure are reset.

Stopped entries are kept in the flux cron until deleted with flux
cron delete. Active cron entries may also be deleted, with currently
executing tasks optionally killed if the --kill option is provided.

TASK EXECUTION

As related above, cron entry commands are executed via the broker.exec
service, which is a low level execution service offered outside of any
scheduler control, described in more detail in the flux-exec(1) man
page.

Standard output and error from tasks executed by the cron service are
logged and may be viewed with flux-dmesg(1). If a cron task exits
with non-zero status, or fails to launch under the broker.exec service,
a message is logged and the failure is added to the failure stats.
On task failure, the cron job is stopped if stop-on-failure is set, and
the current failure count exceeds the configured value. By default,
stop-on-failure is not set.

By default, flux-cron module keeps information for the last task executed
for each cron entry. This information can be viewed either via the
flux cron list or flux cron dump ID subcommands. Data such as
start and end time, exit status, rank, and PID for the task is available.
The number of tasks kept for each cron entry may be individually tuned
via the task-history-count option, described in the EXTRA OPTIONS section.

Commands are normally executed immediately on the interval or event
trigger for which they are configured. However, if the sync-event
option is active on the cron module, tasks execution will be deferred
until the next synchronization event. See the documentation above
for flux cron sync for more information.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-exec(1), flux-dmesg(1)

flux-dmesg(1)

SYNOPSIS

flux dmesg [OPTIONS]

DESCRIPTION

Each broker rank maintains a circular buffer of log entries
which can be printed using flux-dmesg(1).

OPTIONS

	-C, --clear

	Clear the ring buffer.

	-c, --read-clear

	Clear the ring buffer after printing its contents.

	-f, --follow

	After printing the contents of the ring buffer, wait for new entries
and print them as they arrive.

EXAMPLES

To dump the ring buffer on all ranks

$ flux exec flux dmesg | sort

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-setattr(1), flux-broker-attributes(7)

flux-env(1)

SYNOPSIS

flux env [COMMAND]

DESCRIPTION

flux-env(1) dumps a list of all environment variables as set by flux if run
without a command, when run with a command the environment is set and the
command is run as it would be by the ENV(1) utility.

RESOURCES

Github: http://github.com/flux-framework

flux-event(1)

SYNOPSIS

flux event COMMAND [OPTIONS]

DESCRIPTION

Flux events are messages that are broadcast throughout the Flux instance
with publish/subscribe semantics. Each event message has a topic string
and an optional payload.

Subscriptions are by topic string. A subscription topic of length N
matches an event if the first N characters of the event topic
are identical to that of the subscription. For example the event topic
a.b.c is matched by the subscription topic a.b.c, a.b, or a.
A subscription to the empty string matches all events.

COMMANDS

	pub [-r] [-l] [-s] [-p] topic [payload]

	Publish an event with optional payload. If payload is specified,
it is interpreted as raw if the -r option is used, otherwise it is
interpreted as JSON. If the payload spans multiple arguments,
the arguments are concatenated with one space between them.
If -s is specified, wait for the event's sequence number to be
assigned before exiting.
If -l is specified, subscribe to the published event and wait for
it to be received before exiting. -p causes the privacy flag to
be set on the published event.

	sub [-c N] [topic] [topic…​]

	Subscribe to events matching the topic string(s) provided on the
command line. If none are specified, subscribe to all events.
If -c N is specified, print the first N events on stdout and exit;
otherwise continue printing events until a signal is received.
Events are displayed one per line: the topic string, followed by a tab,
followed by the payload, if any.

RESOURCES

Github: http://github.com/flux-framework

flux-exec(1)

SYNOPSIS

flux exec [--noinput] [--label-io] [—dir=DIR'] [--rank=NODESET] [--verbose] COMMANDS...

DESCRIPTION

flux-exec(1) runs commands across one or more flux-broker ranks using
the broker.exec service. The commands are executed as direct children
of the broker, and the broker handles buffering stdout and stderr and
sends the output back to flux-exec(1) which copies output to its own
stdout and stderr.

On receipt of SIGINT and SIGTERM signals, flux-exec(1) shall forward
the received signal to all currently running remote processes.

In the event subprocesses are hanging or ignoring SIGINT, two SIGINT
signals (typically sent via Ctrl+C) in short succession can force
flux-exec(1) to exit.

flux-exec(1) is meant as an administrative and test utility, and cannot
be used to launch Flux jobs.

EXIT STATUS

In the case that all processes are successfully launched, the exit status
of flux-exec(1) is the largest of the remote process exit codes.

If a non-existent rank is targeted, flux-exec(1) will return with
code 68 (EX_NOHOST from sysexits.h).

If one or more remote commands are terminated by a signal, then flux-exec(1)
exits with exit code 128+signo.

OPTIONS

	-l, --label-io

	Label lines of output with the source RANK.

	-n, --noinput

	Do not attempt to forward stdin. Send EOF to remote process stdin.

	-d, --dir=DIR

	Set the working directory of remote COMMANDS to DIR. The default is to
propagate the current working directory of flux-exec(1).

	-r, --rank=NODESET

	Target specific ranks in NODESET. Default is to target "all" ranks.
See NODESET FORMAT below for more information.

	-v, --verbose

	Run with more verbosity.

NODESET FORMAT

A NODESET is a comma separated list of integer ranks. Ranks may be
listed individually or as a range in the form l-k where l < k.

Some examples of nodesets.

	``1''

	rank 1

	``0-3''

	ranks 0, 1, 2, and 3 listed in a range

	``0,1,2,3''

	ranks 0, 1, 2, and 3 listed individually

	``2,5''

	ranks 2 and 5

	``2,4-5''

	ranks 2, 4, and 5

As a special case, the string ``all'' can be specified to indicate every
rank available in the flux instance.

RESOURCES

Github: http://github.com/flux-framework

flux-getattr(1)

SYNOPSIS

flux getattr name

flux setattr name value

flux setattr [--expunge] name

flux lsattr [--values]

DESCRIPTION

Flux broker attributes are both a simple, general-purpose key-value
store with scope limited to the local broker rank, and a method for the
broker to export information needed by Flux services and utilities.

flux-getattr(1) retrieves the value of an attribute.

flux-setattr(1) assigns a new value to an attribute, or optionally
removes an attribute.

flux-lsattr(1) lists attribute names, optionally with their values.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_attr_get(3), flux-broker-attributes(7)

flux-hwloc(1)

SYNOPSIS

flux hwloc info [OPTIONS]

flux hwloc topology [OPTIONS]

DESCRIPTION

The flux-hwloc utility queries hwloc(7) topology information for
an instance by gathering XML from the core resource module.

COMMANDS

flux hwloc requires a COMMAND argument. The supported commands
are

	info [-l,--local|-r,--rank=NODESET]

	Dump a short-form summary of the total number of Machines, Cores,
and Processing Units (PUs) available across all flux-brokers
in the current instance. With --ranks, dump information for
only the specified ranks. With --local dump local system information.

	topology [-l,--local|-r,--rank=NODESET]

	Dump current aggregate topology XML for the current session to stdout.
With --rank only dump aggregate topology for specified ranks. With
--local dump topology XML for the local system. With hwloc < 2.0,
this command will dump a custom topology with multiple machines when
the aggregate contains multiple ranks. This is not possible with hwloc
2.0 because multiple Machine objects in a topology is no longer supported,
and therefore the XML for each rank will be printed separately.

NODESET FORMAT

A NODESET is a comma separated list of integer ranks. Ranks may be
listed individually or as a range in the form l-k where l < k.

Some examples of nodesets.

	``1''

	rank 1

	``0-3''

	ranks 0, 1, 2, and 3 listed in a range

	``0,1,2,3''

	ranks 0, 1, 2, and 3 listed individually

	``2,5''

	ranks 2 and 5

	``2,4-5''

	ranks 2, 4, and 5

As a special case, the string ``all'' can be specified to indicate every
rank available in the flux instance.

EXAMPLES

When using HWLOC < 2.0 only, the output of flux hwloc topology
may be piped to other hwloc(7) commands such as lstopo(1) or
hwloc-info(1), e.g.

$ flux hwloc topology | lstopo-no-graphics --if xml -i -
System (31GB total)
 Machine L#0 (7976MB) + Package L#0
 Core L#0 + PU L#0 (P#0)
 Core L#1 + PU L#1 (P#1)
 Core L#2 + PU L#2 (P#2)
 Core L#3 + PU L#3 (P#3)
 Machine L#1 (7976MB) + Package L#1
 Core L#4 + PU L#4 (P#0)
 Core L#5 + PU L#5 (P#1)
 Core L#6 + PU L#6 (P#2)
 Core L#7 + PU L#7 (P#3)
 Machine L#2 (7976MB) + Package L#2
 Core L#8 + PU L#8 (P#0)
 Core L#9 + PU L#9 (P#1)
 Core L#10 + PU L#10 (P#2)
 Core L#11 + PU L#11 (P#3)
 Machine L#3 (7976MB) + Package L#3
 Core L#12 + PU L#12 (P#0)
 Core L#13 + PU L#13 (P#1)
 Core L#14 + PU L#14 (P#2)
 Core L#15 + PU L#15 (P#3)

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

lstopo(1), hwloc: https://www.open-mpi.org/projects/hwloc/

flux-job(1)

SYNOPSIS

flux job cancel id [message...]

flux job cancelall [OPTIONS] [message...]

flux job kill [--signal=SIG] id

flux job killall [OPTIONS]

flux job raise [OPTIONS] id [message...]

flux job raiseall [OPTIONS] type [message...]

DESCRIPTION

flux-job(1) performs various job related housekeeping functions.

CANCEL

A single job may be canceled with flux job cancel.

Jobs may be canceled in bulk with flux job cancelall. Target jobs are
selected with:

	-u, --user=USER

	Set target user. The instance owner may specify all for all users.

	-S, --states=STATES

	Set target job states (default: ACTIVE).

	-f, --force

	Confirm the command

	-q, --quiet

	Suppress output if no jobs match

SIGNAL

Running jobs may be signaled with flux job kill.

	-s, --signal=SIG

	Send signal SIG (default: SIGTERM).

Running jobs may be signaled in bulk with flux job killall. In addition
to the option above, target jobs are selected with:

	-u, --user=USER

	Set target user. The instance owner may specify all for all users.

	-f, --force

	Confirm the command.

EXCEPTION

An exception may raised on a single job with flux job raise.

	-s, --severity=N

	Set exception severity. The severity may range from 0=fatal to
7=least severe (default: 0).

	-t, --type=TYPE

	Set exception type (default: cancel).

Exceptions may be raised in bulk with flux job raiseall, which requires a
type (positional argument) and accepts the following options:

	-s, --severity=N

	Set exception severity. The severity may range from 0=fatal to
7=least severe (default: 7).

	-u, --user=USER

	Set target user. The instance owner may specify all for all users.

	-S, --states=STATES

	Set target job states (default: ACTIVE)

	-f, --force

	Confirm the command.

RESOURCES

Github: http://github.com/flux-framework

flux-jobs(1)

SYNOPSIS

flux jobs [OPTIONS] [JOBID ...]

DESCRIPTION

flux-jobs(1) is used to list jobs run under Flux. By default only
pending and running jobs for the current user are listed. Additional
jobs and information can be listed using options listed below.
Alternately, specific job ids can be listed on the command line to
only list those job IDs.

OPTIONS

	-a

	List all jobs of the current user, including inactive jobs.
Equivalent to specifying --filter=pending,running,inactive.

	-A

	List all jobs from all users, including inactive jobs. Equivalent to
specifying --filter=pending,running,inactive --user=all.

	-n, --suppress-header

	For default output, do not output column headers.

	-u, --user=[USERNAME|UID]

	List jobs for a specific username or userid. Specify all for all users.

	-c, --count=N

	Limit output to N jobs (default 1000)

	-f, --filter=STATE|RESULT

	List jobs with specific job state or result. Multiple states or
results can be listed separated by comma. See JOB STATUS below for
additional information. Defaults to pending,running.

	-o, --format=FORMAT

	Specify output format using Python's string format syntax. See OUTPUT
FORMAT below for field names.

	--color=WHEN

	Control output coloring. WHEN can be never, always, or auto.
Defaults to auto.

	--stats

	Output a summary of global job statistics before the header.
May be useful in conjunction with utilities like watch(1), e.g.:

$ watch -n 2 flux jobs --stats -f running -c 25

will display a summary of global statistics along with the top 25
running jobs, updated every 2 seconds.

	--stats-only

	Output a summary of global job statistics and exit.
flux jobs will exit with non-zero exit status with --stats-only
if there are no active jobs. This allows the following loop to work:

$ while flux jobs --stats-only; do sleep 2; done

All other options are ignored when --stats-only is used.

JOB STATUS

Jobs may be observed to pass through five job states in Flux: DEPEND,
SCHED, RUN, CLEANUP, and INACTIVE (see Flux RFC 21). Under the
state_single field name, these are abbreviated as D, S, R, C, and I
respectively. For convenience and clarity, the following virtual job
states also exist: "pending", an alias for DEPEND,SCHED; "running", an
alias for RUN,CLEANUP; "active", an alias for "pending,running".

After a job has finished and is in the INACTIVE state, it can be
marked with one of three possible results: COMPLETED, FAILED,
CANCELED. Under the result_abbrev field name, these are
abbreviated as CD, F, and CA respectively.

The job status is a user friendly mix of both, a job is always in one
of the following five statuses: PENDING, RUNNING, COMPLETED, FAILED,
or CANCELED. Under the status_abbrev field name, these are
abbreviated as P, R, CD, F, and CA respectively.

OUTPUT FORMAT

The --format option can be used to specify an output format to
flux-jobs(1) using Python's string format syntax. For example, the
following is the format used for the default format:

{id.f58:>12} {username:<8.8} {name:<10.10} {status_abbrev:>2.2} {ntasks:>6} {nnodes:>6h} {runtime!F:>8h} {nodelist:h}

The special presentation type h can be used to convert an empty
string, "0s", "0.0", or "0:00:00" to a hyphen. For example, normally
"{nodelist}" would output an empty string if the job has not yet run.
By specifying, "{nodelist:h}", a hyphen would be presented instead.

Additionally, the custom job formatter supports a set of special
conversion flags. Conversion flags follow the format field and are
used to transform the value before formatting takes place. Currently,
the following conversion flags are supported by flux-jobs:

	!D

	convert a timestamp field to ISO8601 date and time (e.g. 2020-01-07T13:31:00).
Defaults to empty string if timestamp field does not exist.

	!d

	convert a timestamp to a Python datetime object. This allows datetime specific
format to be used, e.g. {t_inactive!d:%H:%M:%S}. However, note that width
and alignment specifiers are not supported for datetime formatting.
Defaults to datetime of epoch if timestamp field does not exist.

	!F

	convert a duration in floating point seconds to Flux Standard Duration (FSD).
string. Defaults to empty string if duration field does not exist.

	!H

	convert a duration to hours:minutes:seconds form (e.g. {runtime!H}).
Defaults to empty string if duration field does not exist.

Annotations can be retrieved via the annotations field name.
Specific keys and sub-object keys can be retrieved separated by a
period ("."). For example, if the scheduler has annotated the job
with a reason pending status, it can be retrieved via
"{annotations.sched.reason_pending}".

As a convenience, the field names sched and user can be used as
substitutions for annotations.sched and annotations.user. For
example, a reason pending status can be retrieved via
"{sched.reason_pending}".

As a reminder to the reader, some shells may interpret special
characters in Python's string format syntax. The format may need to
be quoted or escaped to work under certain shells.

The field names that can be specified are:

	id

	job ID

	id.f58

	job ID in RFC 19 F58 (base58) encoding

	id.hex

	job ID in 0x prefix hexadecimal representation

	id.dothex

	job ID in dotted hexadecimal representation (xx.xx.xx.xx)

	id.words

	job ID in mnemonic encoding

	userid

	job submitter's userid

	username

	job submitter's username

	urgency

	job urgency

	priority

	job priority

	dependencies

	list of any currently outstanding job dependencies

	status

	job status (PENDING, RUNNING, COMPLETED, FAILED, or CANCELED)

	status_abbrev

	status but in a max 2 character abbreviation

	name

	job name

	ntasks

	job task count

	nnodes

	job node count (if job ran / is running), empty string otherwise

	ranks

	job ranks (if job ran / is running), empty string otherwise

	nodelist

	job nodelist (if job ran / is running), empty string otherwise

	state

	job state (DEPEND, SCHED, RUN, CLEANUP, INACTIVE)

	state_single

	job state as a single character

	result

	job result if job is inactive (COMPLETED, FAILED, CANCELED), empty string otherwise

	result_abbrev

	result but in a max 2 character abbreviation

	success

	True of False if job completed successfully, empty string otherwise

	waitstatus

	The raw status of the job as returned by waitpid(2) if the job
exited, otherwise an empty string. Note: waitstatus is the maximum
wait status returned by all job shells in a job, which may not necessarily
indicate the highest task wait status. (The job shell exits with the
maximum task exit status, unless a task died due to a signal, in which
case the shell exits with 128+signo)

	returncode

	The job return code if the job has exited, or an empty string if the
job is still active. The return code of a job is the highest job shell
exit code, or negative signal number if the job shell was terminated by
a signal. If the job was canceled before it started, then the returncode
is set to the special value -128.

	exception.occurred

	True of False if job had an exception, empty string otherwise

	exception.severity

	If exception.occurred True, the highest severity, empty string otherwise

	exception.type

	If exception.occurred True, the highest severity exception type, empty string otherwise

	exception.note

	If exception.occurred True, the highest severity exception note, empty string otherwise

	t_submit

	time job was submitted

	t_depend

	time job entered depend state

	t_run

	time job entered run state

	t_cleanup

	time job entered cleanup state

	t_inactive

	time job entered inactive state

	runtime

	job runtime

	expiration

	time at which job allocation was marked to expire

	t_remaining

	If job is running, amount of time remaining before expiration

	annotations

	annotations metadata, use "." to get specific keys

	sched

	short hand for annotations.sched

	user

	short hand for annotations.user

EXAMPLES

The default output of flux-jobs(1) will list the pending and running
jobs of the current user. It is equivalent to:

$ flux jobs --filter=pending,running

To list all pending, running, and inactive jobs, of the current user,
you can use --filter option or the -a option:

$ flux jobs -a

OR

$ flux jobs --filter=pending,running,inactive

To alter which user's jobs are listed, specify the user with --user:

$ flux jobs --user=flux

Jobs that have finished may be filtered further by specifying if they
have completed, failed, or were canceled. For example, the following
will list the jobs that have failed or were canceled:

$ flux jobs --filter=failed,canceled

The --format option can be used to alter the output format or output
additional information. For example, the following would output all
jobids for the user in decimal form, and output any annotations the
scheduler attached to each job:

$ flux jobs -a --format="{id} {annotations.sched}"

The following would output the job id and exception information, so a
user can learn why a job failed.

$ flux jobs --filter=failed --format="{id} {exception.type} {exception.note}"

RESOURCES

Github: http://github.com/flux-framework

flux-jobtap(1)

SYNOPSIS

flux jobtap COMMAND [OPTIONS] ARGS...

DESCRIPTION

The flux-jobtap(1) command is used to query, load, and remove jobtap
plugins from the Flux job-manager module at runtime.

COMMANDS

	list [-a, --all]

	Print the currently loaded list of plugins. Builtin plugins will only
be displayed when the --all option is used. Plugins built in to the
job manager have a leading . in the name, e.g. .priority-default.

	load [-r, --remove=NAME] PLUGIN [KEY=VAL, KEY=VAL...]

	Load a new plugin into the job-manager, optionally removing plugin NAME
first. With --remove NAME may be a glob(7) pattern match. Optional
KEY=VAL occurring after PLUGIN will set config KEY to VAL for PLUGIN.

	remove NAME

	Remove plugin NAME. NAME may be a glob(7) pattern in which case all
matching, non-builtin plugins are removed. The special value all may
be used to remove all loaded jobtap plugins. Builtin plugins (those
starting with a leading .) must be removed explicitly or by
preceding NAME with ., e.g. .*.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-jobtap-plugins(7)

flux-keygen(1)

SYNOPSIS

flux keygen PATH

DESCRIPTION

flux-keygen(1) generates a long-term CURVE certificate used to secure
the overlay network of a Flux system instance.

The Flux overlay network implements cryptographic privacy and data integrity
when data is sent over a network. Point to point ZeroMQ TCP connections
are protected with the CURVE security mechanism built into ZeroMQ
version 4, based on curve25519 and a CurveCP-like protocol.

All brokers participating in the system instance must use the same
certificate. The certificate is part of the bootstrap configuration.

Flux instances that bootstrap with PMI do not require a configured certificate.
In that case, each broker self-generates a unique certificate and the
public keys are exchanged with PMI.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

ZAP: http://rfc.zeromq.org/spec:27

CurveZMQ: http://curvezmq.org/page:read-the-docs

ZMTP/3.0: http://rfc.zeromq.org/spec:23

Using ZeroMQ Security:
http://hintjens.com/blog:48 and
http://hintjens.com/blog:49

flux-kvs(1)

SYNOPSIS

flux kvs COMMAND [OPTIONS]

DESCRIPTION

The Flux key-value store (KVS) is a simple, distributed data storage
service used a building block by other Flux components.
flux-kvs(1) is a command line utility that operates on the KVS.
It is a very thin layer on top of a C API.

The Flux KVS stores values under string keys. The keys are
hierarchical, using "." as a path separator, analogous to "/"
separated UNIX file paths. A single "." represents the root directory
of the KVS.

The KVS is distributed among the broker ranks of a Flux instance. Rank 0
is the leader, and other ranks are caching followers. All writes are flushed
to the leader during a commit operation. Data is stored in a hash tree
such that every commit results in a new root hash. Each new root hash
is multicast across the session. When followers update their root hash,
they atomically update their view to match the leader. There may be a
delay after a commit while old data is served on a follower that has not yet
updated its root hash, thus the Flux KVS consistency model is "eventually
consistent". Followers cache data temporally and fault in new data through
their parent in the overlay network.

Different KVS namespaces can be created in which kvs values can be
read from/written to. By default, all KVS operations operate on the
default KVS namespace "primary". An alternate namespace can be
specified in most kvs commands via the --namespace option, or by
setting the namespace in the environment variable FLUX_KVS_NAMESPACE.

flux-kvs(1) runs a KVS COMMAND. The possible commands and their
arguments are described below.

COMMANDS

	namespace create [-o owner] name [name ...]

	Create a new kvs namespace. User may specify an alternate userid of a
user that owns the namespace via -o. Specifying an alternate owner
would allow a non-instance owner to read/write to a namespace.

	namespace remove name [name...]

	Remove a kvs namespace.

	namespace list

	List all current namespaces and info on each namespace.

	get [-N ns] [-r|-t] [-a treeobj] [-l] [-W] [-w] [-u] [-A] [-f] [-c count] key [key ...]

	Retrieve the value stored under key. If nothing has been stored
under key, display an error message. Specify an alternate namespace
to retrieve key from via -N. If no options, value is displayed
with a newline appended (if value length is nonzero). If -l, a
key= prefix is added. If -r, value is displayed without a newline.
If -t, the RFC 11 object is displayed. -a treeobj causes the
lookup to be relative to an RFC 11 snapshot reference. If -W is
specified and a key does not exist, wait until the key has been
created. If -w, after the initial value, display the new value each
time the key is written to until interrupted, or if -c count is
specified, until count values have been displayed. If -u is
specified, only writes that change the key value will be displayed.
If -A is specified, only display appends that occur on a key. By
default, only a direct write to a key is monitored, which may miss
several unique situations, such as the replacement of an entire parent
directory. The -f option can be specified to monitor for many of
these special situations.

	put [-N ns] [-O|-s] [-r|-t] [-n] [-A] key=value [key=value ...]

	Store value under key and commit it. Specify an alternate
namespace to commit value(s) via -N. If it already has a value,
overwrite it. If no options, value is stored directly. If -r or
-t, the value may optionally be read from standard input if
specified as "-". If -r, the value may include embedded NULL bytes.
If -t, value is stored as a RFC 11 object. -n prevents the commit
from being merged with with other contemporaneous commits. -A
appends the value to a key instead of overwriting the value. Append
is incompatible with the -j option. After a successful put, -O or
-s can be specified to output the RFC11 treeobj or root sequence
number of the root containing the put(s).

	ls [-N ns] [-R] [-d] [-F] [-w COLS] [-1] [key ...]

	Display directory referred to by key, or "." (root) if unspecified.
Specify an alternate namespace to display via -N. Remaining options are
roughly equivalent to a subset of ls(1) options. -R lists directory
recursively. -d displays directory not its contents. -F
classifies files with one character suffix (. is directory, @ is
symlink). -w COLS sets the terminal width in characters. -1
causes output to be displayed in one column.

	dir [-N ns] [-R] [-d] [-w COLS] [-a treeobj] [key]

	Display all keys and their values under the directory key. Specify
an alternate namespace to display via -N. If key does not exist
or is not a directory, display an error message. If key is not
provided, "." (root of the namespace) is assumed. If -R is
specified, recursively display keys under subdirectories. If -d is
specified, do not output key values. Output is truncated to fit the
terminal width. -w COLS sets the terminal width (0=unlimited). -a
treeobj causes the lookup to be relative to an RFC 11 snapshot
reference.

	unlink [-N ns] [-O|-s] [-R] [-f] key [key ...]

	Remove key from the KVS and commit the change. Specify an alternate
namespace to commit to via -N. If key represents a directory,
specify -R to remove all keys underneath it. If -f is specified,
ignore nonexistent files. After a successful unlink, -O or -s can
be specified to output the RFC11 treeobj or root sequence number of
the root containing the unlink(s).

	link [-N ns] [-T ns] [-O|-s] target linkname

	Create a new name for target, similar to a symbolic link, and commit
the change. target does not have to exist. If linkname exists,
it is overwritten. Specify an alternate namespace to commit linkname
to via -N. Specify the target's namespace via -T. After a
successfully created link, -O or -s can be specified to output the
RFC11 treeobj or root sequence number of the root containing the link.

	readlink [-N ns] [-a treeobj] [-o | -k] key [key ...]

	Retrieve the key a link refers to rather than its value, as would be
returned by get. Specify an alternate namespace to retrieve from
via -N. -a treeobj causes the lookup to be relative to an RFC 11
snapshot reference. If the link points to a namespace, the namespace
and key will be output in the format <namespace>::<key>. The -o
can be used to only output namespaces and the -k can be used to only
output keys.

	mkdir [-N ns] [-O|-s] key [key ...]

	Create an empty directory and commit the change. If key exists,
it is overwritten. Specify an alternate namespace to commit to via
-N. After a successful mkdir, -O or -s can be specified to
output the RFC11 treeobj or root sequence number of the root
containing the new directory.

	copy [-S src-ns] [-D dst-ns] source destination

	Copy source key to destination key. Optionally, specify a source
and/or destination namespace for the source and/or destination
respectively. If a directory is copied, a new reference is created;
it is unnecessary for copy to recurse into source.

	move [-S src-ns] [-D dst-ns] source destination

	Like copy, but source is unlinked after the copy.

	dropcache [--all]

	Tell the local KVS to drop any cache it is holding. If --all is
specified, send an event across the Flux instance instructing all KVS
modules to drop their caches.

	version [-N ns]

	Display the current KVS version, an integer value. The version starts
at zero and is incremented on each KVS commit. Note that some commits
may be aggregated for performance and the version will be incremented
once for the aggregation, so it cannot be used as a direct count of
commit requests. Specify an alternate namespace to retrieve the
version from via -N.

	wait [-N ns] version

	Block until the KVS version reaches version or greater. A simple form
of synchronization between peers is: node A puts a value, commits it,
reads version, sends version to node B. Node B waits for version, gets
value.

	getroot [-N ns] [-s | -o]

	Retrieve the current KVS root, displaying it as an RFC 11 dirref object.
Specify an alternate namespace to retrieve from via -N. If -o is
specified, display the namespace owner. If -s is specified, display
the root sequence number.

	eventlog get [-N ns] [-W] [-w] [-c count] [-u] key

	Display the contents of an RFC 18 KVS eventlog referred to by key.
If -u is specified, display the log in raw form. If -W is
specified and the eventlog does not exist, wait until it has been
created. If -w is specified, after the existing contents have
been displayed, the eventlog is monitored and updates are displayed
as they are committed. This runs until the program is interrupted
or an error occurs, unless the number of events is limited with the
-c option. Specify an alternate namespace to display from via
-N.

	eventlog append [-N ns] [-t SECONDS] key name [context ...]

	Append an event to an RFC 18 KVS eventlog referred to by key.
The event name and optional context are specified on the command line.
The timestamp may optionally be specified with -t as decimal seconds since
the UNIX epoch (UTC), otherwise the current wall clock is used.
Specify an alternate namespace to append to via -N.

	eventlog wait-event [-N ns] [-t SECONDS] [-u] [-W] [-q] [-v] key event

	Wait for a specific event to occur in an RFC 18 KVS eventlog
referred to by key. If -t is specified, timeout after
SECONDS if the event has not occurred. If -u is specified,
display the log in raw form. If -W is specified and the eventlog
does not exist, wait until it has been created. If -q is
specified, not output the matched event. If -v is specified,
output all events prior to the matched event. This runs until the
program is interrupted, the event occurs, or a timeout occurs if
-t is specified. Specify an alternate namespace to display from
via -N.

RESOURCES

Github: http://github.com/flux-framework

flux-logger(1)

SYNOPSIS

flux logger [--severity SEVERITY] [--appname NAME] message ...

DESCRIPTION

flux-logger(1) appends Flux log entries to the local Flux
broker's circular buffer.

Log entries are associated with a syslog(3) style severity.
Valid severity names are emerg, alert, crit, err,
warning, notice, info, debug.

Log entries may also have a user-defined application name.
This is different than the syslog facility, which is always set
to LOG_USER in Flux log messages.

The wall clock time (UTC) and the broker rank are added to the log
message when it is created.

OPTIONS

	-s, --severity=SEVERITY

	Specify the log message severity. The default severity is info.

	-n, --appname=NAME

	Specify a user-defined application name to associate with the log message.
The default appname is logger.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-dmesg(1), flux_log(3), syslog(3)

flux-mini(1)

SYNOPSIS

flux mini submit [OPTIONS] [--ntasks=N] COMMAND...

flux mini bulksubmit [OPTIONS] [--ntasks=N] COMMAND...

flux mini run [OPTIONS] [--ntasks=N] COMMAND...

flux mini batch [OPTIONS] --nslots=N SCRIPT...

flux mini alloc [OPTIONS] --nslots=N [COMMAND...]

DESCRIPTION

flux-mini(1) submits jobs to run under Flux. In the case of submit
or run the job consists of N copies of COMMAND launched together
as a parallel job, while batch and alloc submit a script or launch
a command as the initial program of a new Flux instance.

If --ntasks is unspecified, a value of N=1 is assumed. Commands that
take --nslots have no default and require that --nslots be explicitly
specified.

The submit and batch commands enqueue the job and print its numerical
Job ID on standard output.

The run and alloc commands do the same interactively, blocking until
the job has completed.

The bulksubmit command enqueues one job each for a set of inputs read
on either stdin, or given on the command line. The inputs are optionally
substituted in COMMAND and/or many submission options. See more in the
BULKSUBMIT section below.

For flux-mini batch, the SCRIPT given on the command line is assumed
to be a file name, unless the --wrap option used, and the script
file is read and submitted along with the job. If no SCRIPT is
provided, then one will be read from stdin.

flux-mini alloc works similarly to batch, but instead blocks until
the job has started and interactively attaches to the new Flux instance.
By default, a new shell is spawned as the initial program of the instance,
but this may be overridden by supplying COMMAND on the command line.

The intent is for the "mini" commands to remain simple with stable interfaces
over time, making them suitable for use in scripts. For advanced usage,
see flux-run(1) and flux-submit(1).

The available OPTIONS are detailed below.

JOB PARAMETERS

These commands accept only the simplest parameters for expressing
the size of the parallel program and the geometry of its task slots:

The run and submit commands take the following options to specify
the size of the job request:

	-n, --ntasks=N

	Set the number of tasks to launch (default 1).

	-c, --cores-per-task=N

	Set the number of cores to assign to each task (default 1).

	-g, --gpus-per-task=N

	Set the number of GPU devices to assign to each task (default none).

The batch and alloc commands do not launch tasks directly, and
therefore job parameters are specified in terms of resource slot size
and number of slots. A resource slot can be thought of as the minimal
resources required for a virtual task. The default slot size is 1 core.

	-n, --nslots=N

	Set the number of slots requested. This parameter is required.

	-c, --cores-per-slot=N

	Set the number of cores to assign to each slot (default 1).

	-g, --gpus-per-slot=N

	Set the number of GPU devices to assign to each slot (default none).

The run, submit, batch, and alloc commands also take
following additional job parameters:

	-N, --nodes=N

	Set the number of nodes to assign to the job. Tasks will be distributed
evenly across the allocated nodes. It is an error to request more nodes
than there are tasks. If unspecified, the number of nodes will be chosen
by the scheduler.

	-t, --time-limit=FSD

	Set a time limit for the job in Flux standard duration (RFC 23).
FSD is a floating point number with a single character units suffix
("s", "m", "h", or "d"). If unspecified, the job is subject to the
system default time limit.

STANDARD I/O

By default, task stdout and stderr streams are redirected to the
KVS, where they may be accessed with the flux job attach command.

In addition, flux-mini run processes standard I/O in real time,
emitting the job's I/O to its stdout and stderr.

	--output=TEMPLATE

	Specify the filename TEMPLATE for stdout redirection, bypassing
the KVS. TEMPLATE may be a mustache template which supports the
tags {{id}} and {{jobid}} which expand to the current jobid
in the F58 encoding. If needed, an alternate encoding can be
selected by using a subkey with the name of the desired encoding,
e.g. {{id.dec}}. Supported encodings include f58 (the default),
dec, hex, dothex, and words. For flux mini batch the
default TEMPLATE is flux-{{id}}.out. To force output to KVS so it is
available with flux job attach, set TEMPLATE to none or kvs.

	--error=TEMPLATE

	Redirect stderr to the specified filename TEMPLATE, bypassing the KVS.
TEMPLATE is expanded as described above.

	-l, --label-io

	Add task rank prefixes to each line of output.

DEPENDENCIES

Note

Flux supports a simple but powerful job dependency specification in jobspec.
See Flux Framework RFC 26 for more detailed information about the generic
dependency specification.

Dependencies may be specified on the flux mini command line using the
following option

	--dependency=URI

	Specify a dependency of the submitted job using RFC 26 dependency URI
format. The URI format is SCHEME:VALUE[?key=val[&key=val...]].
The URI will be converted into RFC 26 JSON object form and appended to
the jobspec attributes.system.dependencies array. If the current
Flux instance does not support dependency scheme SCHEME, then the
submitted job will be rejected with an error message indicating this
fact.

The --dependency option may be specified multiple times. Each use
appends a new dependency object to the attributes.system.dependencies
array.

The following dependency schemes are built-in:

Note

The after* dependency schemes listed below all require that the
target JOBID be currently active. If the target JOBID has become
inactive by the time the dependent job is submitted, then the submission
will be rejected with an error that the dependency job cannot be found.

	after:JOBID

	This dependency is satisfied after JOBID starts.

	afterany:JOBID

	This dependency is satisfied after JOBID enters the INACTIVE state,
regardless of the result

	afterok:JOBID

	This dependency is satisfied after JOBID enters the INACTIVE state
with a successful result.

	afternotok:JOBID

	This dependency is satisfied after JOBID enters the INACTIVE state
with an unsuccessful result.

	begin-time:TIMESTAMP

	This dependency is satisfied after TIMESTAMP, which is specified in
floating point seconds since the UNIX epoch. See the flux-mini
--begin-time option below for a more user-friendly interface
to the begin-time dependency.

In any of the above after* cases, if it is determined that the
dependency cannot be satisfied (e.g. a job fails due to an exception
with afterok), then a fatal exception of type=dependency is raised
on the current job.

ENVIRONMENT

By default, flux-mini duplicates the current environment when
submitting jobs. However, a set of environment manipulation options are
provided to give fine control over the requested environment submitted
with the job.

	--env=RULE

	Control how environment variables are exported with RULE. See
ENV RULE SYNTAX section below for more information. Rules are
applied in the order in which they are used on the command line.
This option may be specified multiple times.

	--env-remove=PATTERN

	Remove all environment variables matching PATTERN from the current
generated environment. If PATTERN starts with a / character,
then it is considered a regex(7), otherwise PATTERN is treated
as a shell glob(7). This option is equivalent to --env=-PATTERN
and may be used multiple times.

	--env-file=FILE

	Read a set of environment RULES from a FILE. This option is
equivalent to --env=^FILE and may be used multiple times.

ENV RULES

The --env* options of flux-mini allow control of the environment
exported to jobs via a set of RULE expressions. The currently supported
rules are

	If a rule begins with -, then the rest of the rule is a pattern
which removes matching environment variables. If the pattern starts
with /, it is a regex(7), optionally ending with /, otherwise
the pattern is considered a shell glob(7) expression.

	Examples:

	-* or -/.*/ filter all environment variables creating an
empty environment.

	If a rule begins with ^ then the rest of the rule is a filename
from which to read more rules, one per line. The ~ character is
expanded to the user's home directory.

	Examples:

	~/envfile reads rules from file $HOME/envfile

	If a rule is of the form VAR=VAL, the variable VAR is set
to VAL. Before being set, however, VAL will undergo simple
variable substitution using the Python string.Template class. This
simple substitution supports the following syntax:

	$$ is an escape; it is replaced with $

	$var will substitute var from the current environment,
falling back to the process environment. An error will be thrown
if environment variable var is not set.

	${var} is equivalent to $var

	Advanced parameter substitution is not allowed, e.g. ${var:-foo}
will raise an error.

	Examples:

	PATH=/bin, PATH=$PATH:/bin, FOO=${BAR}something

	Otherwise, the rule is considered a pattern from which to match
variables from the process environment if they do not exist in
the generated environment. E.g. PATH will export PATH from the
current environment (if it has not already been set in the generated
environment), and OMP* would copy all environment variables that
start with OMP and are not already set in the generated environment.
It is important to note that if the pattern does not match any variables,
then the rule is a no-op, i.e. an error is not generated.

	Examples:

	PATH, FLUX_*_PATH, /^OMP.*/

Since flux-mini always starts with a copy of the current environment,
the default implicit rule is * (or --env=*). To start with an
empty environment instead, the -* rule or --env-remove=* option
should be used. For example, the following will only export the current
PATH to a job:

flux mini run --env-remove=* --env=PATH ...

Since variables can be expanded from the currently built environment, and
--env options are applied in the order they are used, variables can
be composed on the command line by multiple invocations of --env, e.g.:

flux mini run --env-remove=* \
 --env=PATH=/bin --env='PATH=$PATH:/usr/bin' ...

Note that care must be taken to quote arguments so that $PATH is not
expanded by the shell.

This works particularly well when specifying rules in a file:

-*
OMP*
FOO=bar
BAR=${FOO}/baz

The above file would first clear the environment, then copy all variables
starting with OMP from the current environment, set FOO=bar,
and then set BAR=bar/baz.

EXIT STATUS

The job exit status, normally the largest task exit status, is stored
in the KVS. If one or more tasks are terminated with a signal,
the job exit status is 128+signo.

The flux-job attach command exits with the job exit status.

In addition, flux-mini run runs until the job completes and exits
with the job exit status.

OTHER OPTIONS

	--urgency=N

	Specify job urgency, which affects queue order. Numerically higher urgency
jobs are considered by the scheduler first. Guests may submit jobs with
urgency in the range of 0 to 16, while instance owners may submit jobs
with urgency in the range of 0 to 31 (default 16). In addition to
numerical values, the special names hold (0), default (16),
and expedite (31) are also accepted.

	-v, --verbose

	(run,alloc,submit,bulksubmit) Increase verbosity on stderr. For example,
currently flux mini run -v displays jobid, -vv displays job events,
and -vvv displays exec events. flux mini alloc -v forces the command
to print the submitted jobid on stderr.
The specific output may change in the future.

	-o, --setopt=KEY[=VAL]

	Set shell option. Keys may include periods to denote hierarchy.
VAL is optional and may be valid JSON (bare values, objects, or arrays),
otherwise VAL is interpreted as a string. If VAL is not set, then the
default value is 1. See SHELL OPTIONS below.

	--setattr=KEY=VAL

	Set jobspec attribute. Keys may include periods to denote hierarchy.
VAL may be valid JSON (bare values, objects, or arrays), otherwise VAL
is interpreted as a string. If KEY starts with a ^ character, then
VAL is interpreted as a file, which must be valid JSON, to use as the
attribute value.

	--begin-time=DATETIME

	Convenience option for setting a begin-time dependency for a job.
The job is guaranteed to start after the specified date and time.
If DATETIME begins with a + character, then the remainder is
considered to be an offset in Flux standard duration (RFC 23), otherwise,
any datetime expression accepted by the Python
parsedatetime [https://github.com/bear/parsedatetime] module
is accepted, e.g. 2021-06-21 8am, in an hour,
tomorrow morning, etc.

	--dry-run

	Don't actually submit job. Just emit jobspec on stdout and exit for
run, submit, alloc, and batch. For bulksubmit,
emit a line of output including relevant options for each job which
would have been submitted,

	--debug

	Enable job debug events, primarily for debugging Flux itself.
The specific effects of this option may change in the future.

	-B, --broker-opts=OPT

	(batch only) For batch jobs, pass specified options to the Flux brokers
of the new instance. This option may be specified multiple times.

	--wrap

	(batch only) The --wrap option wraps the specified COMMAND and ARGS in
a shell script, by prefixing with #!/bin/sh. If no COMMAND is present,
then a SCRIPT is read on stdin and wrapped in a /bin/sh script.

	--cc=IDSET

	(submit,bulksubmit) Replicate the job for each id in IDSET.
FLUX_JOB_CC=id will be set in the environment of each submitted job
to allow the job to alter its execution based on the submission index.
(e.g. for reading from a different input file). When using --cc,
the substitution string {cc} may be used in options and commands
and will be replaced by the current id.

	--bcc=IDSET

	(submit,bulksubmit) Identical to --cc, but do not set
FLUX_JOB_CC in each job. All jobs will be identical copies.
As with --cc, {cc} in option arguments and commands will be
replaced with the current id.

	--log=FILE

	(submit,bulksubmit) Log flux-mini output and stderr to FILE
instead of the terminal. If a replacement (e.g. {} or {cc})
appears in FILE, then one or more output files may be opened.
For example, to save all submitted jobids into separate files, use:

flux mini submit --cc=1-4 --log=job{cc}.id hostname

	--log-stderr=FILE

	(submit,bulksubmit) Separate stderr into FILE instead of sending
it to the terminal or a FILE specified by --log.

	--wait

	(submit,bulksubmit) Wait on completion of all jobs before exiting.

	--watch

	(submit,bulksubmit) Display output from all jobs. Implies --wait.

	--progress

	(submit,bulksubmit) With --wait, display a progress bar showing
the progress of job completion. Without --wait, the progress bar
will show progress of job submission.

	--jps

	(submit,bulksubmit) With --progress, display throughput statistics
(jobs/s) in the progress bar.

	--define=NAME=CODE

	(bulksubmit) Define a named method that will be made available as an
attribute during command and option replacement. The string being
processed is available as x. For example:

$ seq 1 8 | flux mini bulksubmit --define=pow="2**int(x)" -n {.pow} ...

	--shuffle

	(bulksubmit) Shuffle the list of commands before submission.

	--sep=STRING

	(bulksubmit) Change the separator for file input. The default is
to separate files (including stdin) by newline. To separate by
consecutive whitespace, specify --sep=none.

BULKSUBMIT

The bulksubmit utility allows rapid bulk submission of jobs using
an interface similar to GNU parallel or xargs. The command takes
inputs on stdin or the command line (separated by :::), and submits
the supplied command template and options as one job per input combination.

The replacement is done using Python's string.format(), which is
supplied a list of inputs on each iteration. Therefore, in the common case
of a single input list, {} will work as the substitution string, e.g.:

$ seq 1 4 | flux mini bulksubmit echo {}
flux-mini: submit echo 1
flux-mini: submit echo 2
flux-mini: submit echo 3
flux-mini: submit echo 4

With --dry-run bulksubmit will print the args and command which
would have been submitted, but will not perform any job submission.

The bulksubmit command can also take input lists on the command line.
The inputs are separated from each other and the command with the special
delimiter ::::

$ flux mini bulksubmit echo {} ::: 1 2 3 4
flux-mini: submit echo 1
flux-mini: submit echo 2
flux-mini: submit echo 3
flux-mini: submit echo 4

Multiple inputs are combined, in which case each input is passed as a
positional parameter to the underlying format(), so should be accessed
by index:

$ flux mini bulksubmit --dry-run echo {1} {0} ::: 1 2 ::: 3 4
flux-mini: submit echo 3 1
flux-mini: submit echo 4 1
flux-mini: submit echo 3 2
flux-mini: submit echo 4 2

If the generation of all combinations of an input list with other inputs is not
desired, the special input delimited :::+ may be used to "link" the input,
so that only one argument from this source will be used per other input,
e.g.:

$ flux mini bulksubmit --dry-run echo {0} {1} ::: 1 2 :::+ 3 4
flux-mini: submit 1 3
flux-mini: submit 2 4

The linked input will be cycled through if it is shorter than other inputs.

An input list can be read from a file with :::::

$ seq 0 3 >inputs
$ flux mini bulksubmit --dry-run :::: inputs
flux-mini: submit 0
flux-mini: submit 1
flux-mini: submit 2
flux-mini: submit 3

If the filename is - then stdin will be used. This is useful
for including stdin when reading other inputs.

The delimiter ::::+ indicates that the next file is to be linked to
the inputs instead of combined with them, as with :::+.

There are several predefined attributes for input substitution.
These include:

	{.%} returns the input string with any extension removed.

	{./} returns the basename of the input string.

	{./%} returns the basename of the input string with any
extension removed.

	{.//} returns the dirname of the input string

	{seq} returns the input sequence number (0 origin)

	{seq1} returns the input sequence number (1 origin)

	{cc} returns the current id from use of --cc or --bcc.
Note that replacement of {cc} is done in a second pass, since the
--cc option argument may itself be replaced in the first substitution
pass. If --cc/bcc were not used, then {cc} is replaced with an
empty string. This is the only substitution supported with
flux-mini submit.

Note that besides {seq}, {seq1}, and {cc} these attributes
can also take the input index, e.g. {0.%} or {1.//}, when multiple
inputs are used.

Additional attributes may be defined with the --define option, e.g.:

$ flux mini bulksubmit --dry-run --define=p2='2**int(x)' -n {.p2} hostname \
 ::: $(seq 0 4)
flux-mini: submit -n1 hostname
flux-mini: submit -n2 hostname
flux-mini: submit -n4 hostname
flux-mini: submit -n8 hostname
flux-mini: submit -n16 hostname

The input string being indexed is passed to defined attributes via the
local x as seen above.

SHELL OPTIONS

These options are provided by built-in shell plugins that may be
overridden in some cases:

	mpi=spectrum

	Load the MPI personality plugin for IBM Spectrum MPI. All other MPI
plugins are loaded by default.

	cpu-affinity=per-task

	Tasks are distributed across the assigned resources.

	cpu-affinity=off

	Disable task affinity plugin.

	gpu-affinity=per-task

	GPU devices are distributed evenly among local tasks. Otherwise,
GPU device affinity is to the job.

	gpu-affinity=off

	Disable GPU affinity for this job.

	verbose

	Increase verbosity of the job shell log.

	pmi.kvs=native

	Use the native Flux KVS instead of the PMI plugin's built-in key exchange
algorithm.

	pmi.exchange.k=N

	Configure the PMI plugin's built-in key exchange algorithm to use a
virtual tree fanout of N for key gather/broadcast. The default is 2.

RESOURCES

Github: http://github.com/flux-framework

flux-module(1)

SYNOPSIS

flux module COMMAND [OPTIONS]

DESCRIPTION

flux-module(1) manages dynamically loadable Flux modules.
It can load/remove/list modules for the flux-broker(1), and for other
Flux services that support dynamic module extensions.

COMMANDS

	info [name]

	Display information about module name.
If name includes a slash / character, it is interpreted as a
file path, and the module name is then determined by reading the
mod_name symbol. Otherwise, FLUX_MODULE_PATH is searched for a module
with mod_name equal to name.

	load name [module-arguments …​]

	Load module name, interpreted as described above.
The service that will load the module is inferred
from the module name. When the load command completes successfully,
the new module is ready to accept messages on all targeted ranks.

	remove [--force] name

	Remove module name. The service that will unload the module is
inferred from the name specified on the command line. If -f, --force
is used, then do not error if module name is not loaded.

	reload [--force] name [module-arguments …​]

	Reload module name. This is equivalent to running flux module remove
followed by flux module load. It is a fatal error if module name is
not loaded during removal unless the -f, --force option is specified.

	list [service]

	List modules loaded by service, or by flux-broker(1) if service is unspecified.

	stats [OPTIONS] [name]

	Request statistics from module name. A JSON object containing a set of
counters for each type of Flux message is returned by default, however
the object may be customized on a module basis.

	debug [OPTIONS] [name]

	Manipulate debug flags in module name. The interpretation of debug
flag bits is private to the module and its test drivers.

STATS OPTIONS

	-p, --parse=OBJNAME

	OBJNAME is a period delimited list of field names that should be walked
to obtain a specific value or object in the returned JSON.

	-t, --type=int|double

	Force the returned value to be converted to int or double.

	-s, --scale=N

	Multiply the returned (int or double) value by the specified
floating point value.

	-R, --rusage

	Return a JSON object representing an rusage structure
returned by getrusage(2).

	-c, --clear

	Send a request message to clear statistics in the target module.

	-C, --clear-all

	Broadcast an event message to clear statistics in the target module
on all ranks.

DEBUG OPTIONS

	-c, --clear

	Set debug flags to zero.

	-S, --set=MASK

	Set debug flags to MASK.
The value may be prefixed with 0x to indicate hexadecimal or 0
to indicate octal, otherwise the value is interpreted as decimal.

	-c, --clearbit=MASK

	Clear the debug bits specified in MASK without disturbing other bits.
The value is interpreted as above.

	-s, --setbit=MASK

	Set the debug bits specified in MASK without disturbing other bits.
The value is interpreted as above.

LIST OUTPUT

The list command displays one line for each unique (as determined by
SHA1 hash) module loaded by a service.

	Module

	The value of the mod_name symbol for this module.

	Size

	The size in bytes of the module .so file.

	Digest

	The last 7 characters of the SHA1 digest of the contents of
the module .so file.

	Idle

	Idle times are defined for flux-broker(1) modules as the number of
seconds since the module last sent a request or response message.
The idle time may be defined differently for other services, or have no
meaning.

MODULE SYMBOLS

All Flux modules define the following global symbols:

	const char *mod_name;

	A null-terminated string defining the module name.
Module names are words delimited by periods, with the service that
will load the module indicated by the words that prefix the final one.
If there is no prefix, the module is loaded by flux-broker(1).

	int mod_main (void *context, int argc, char **argv);

	An entry function.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

syslog(3)

flux-ping(1)

SYNOPSIS

flux ping [OPTIONS] target

DESCRIPTION

flux-ping(1) measures round-trip latency to a Flux service implementing
the "ping" method in a manner analogous to ping(8). The ping response is
essentially an echo of the request, with the route taken to the service
added by the service. This route is displayed in the output and can
give insight into how various addresses are routed.

target may be the name of a Flux service, e.g. "kvs".
flux-ping(1) will send a request to "kvs.ping". As a shorthand,
target can include a rank prefix delimited by an exclamation point.
"flux ping 4!kvs" is equivalent to "flux ping --rank 4 kvs" (see --rank
option below). Don't forget to quote the exclamation point if it is
interpreted by your shell.

As a shorthand, target may also simply be a rank by itself
indicating that the broker on that rank or ranks, rather than a Flux
service, is to be pinged. "flux ping 1" is equivalent to
"flux ping --rank 1 broker".

OPTIONS

	-r, --rank=N

	Find target on a specific broker rank. Special case strings “any”
and “upstream” available to ping FLUX_NODEID_ANY and FLUX_NODEID_UPSTREAM
respectively. Default: send to “any”.

	-p, --pad=N

	Include in the payload a string of length N bytes. The payload will be
echoed back in the response. This option can be used to explore the
effect of message size on latency. Default: no padding.

	-i, --interval=N

	Specify the delay, in seconds, between successive requests.
A value of zero is valid and indicates that there should be no delay.
Requests are sent without waiting for responses. Default: 1.0 seconds.

	-c, --count=N

	Specify the number of requests to send, and terminate the command once
responses have been received for all the requests. Default: unlimited.

	-b, --batch

	Begin processing responses after all requests are sent. Requires --count.

	-u, --userid

	Include userid and rolemask of original request, which are echoed back
in ping response, in ping output.

EXAMPLES

One can ping a service by name, e.g.

$ flux ping kvs
kvs.ping pad=0 seq=0 time=0.774 ms (0EB02!A3368!0!382A6)
kvs.ping pad=0 seq=1 time=0.686 ms (0EB02!A3368!0!382A6)
...

This tells you that the local "kvs" service is alive and the
round-trip latency is a bit over half a millisecond. The route hops are:

0EB02: UUID of the ping command
A3368: UUID of the API module
0: rank of the local broker
382A6: UUID of the KVS module.

RESOURCES

Github: http://github.com/flux-framework

flux-proxy(1)

SYNOPSIS

flux proxy [OPTIONS] URI [command [args...]]

DESCRIPTION

flux proxy connects to the Flux instance identified by URI,
then spawns a shell with FLUX_URI pointing to a local:// socket
managed by the proxy program. As long as the shell is running,
the proxy program routes messages between the instance and the
local:// socket. Once the shell terminates, the proxy program
terminates and removes the socket.

The purpose of flux proxy is to allow a connection to be reused,
for example where connection establishment has high latency or
requires authentication.

OPTIONS

	-f, --force

	Allow the proxy command to connect to a broker running a different
version of Flux with a warning message instead of a fatal error.

EXAMPLES

Connect to a job running on the localhost which has a FLUX_URI
of local:///tmp/flux-123456-abcdef/0/local and spawn an interactive
shell:

$ flux proxy local:///tmp/flux-123456-abcdef/0/local

Connect to the same job remotely on host foo.com:

$ flux proxy ssh://foo.com/tmp/flux-123456-abcdef/0/local

RESOURCES

Github: http://github.com/flux-framework

flux-start(1)

SYNOPSIS

flux start [OPTIONS] [initial-program [args...]]

DESCRIPTION

flux-start(1) launches a new Flux instance. By default, flux-start
execs a single flux-broker(1) directly, which will attempt to use
PMI to fetch job information and bootstrap a flux instance.

If a size is specified via --test-size, an instance of that size is to be
started on the local host with flux-start as the parent.

A failure of the initial program (such as non-zero exit code)
causes flux-start to exit with a non-zero exit code.

OPTIONS

	-o, --broker-opts=option_string

	Add options to the message broker daemon, separated by commas.

	-v, --verbose=[LEVEL]

	This option may be specified multiple times, or with a value, to
set a verbosity level. See VERBOSITY LEVELS below.

	-X, --noexec

	Don't execute anything. This option is most useful with -v.

	--caliper-profile=PROFILE

	Run brokers with Caliper profiling enabled, using a Caliper
configuration profile named PROFILE. Requires a version of Flux
built with --enable-caliper. Unless CALI_LOG_VERBOSITY is already
set in the environment, it will default to 0 for all brokers.

	--rundir=DIR

	(only with --test-size) Set the directory that will be
used as the rundir directory for the instance. If the directory
does not exist then it will be created during instance startup.
If a DIR is not set with this option, a unique temporary directory
will be created. Unless DIR was pre-existing, it will be removed
when the instance is destroyed.

	--wrap=ARGS,…​

	Wrap broker execution in a comma-separated list of arguments. This is
useful for running flux-broker directly under debuggers or valgrind.

	-s, --test-size=N

	Launch an instance of size N on the local host.

	--test-hosts=HOSTLIST

	Set FLUX_FAKE_HOSTNAME in the environment of each broker so that the
broker can bootstrap from a config file instead of PMI. HOSTLIST is
assumed to be in rank order. The broker will use the fake hostname to
find its entry in the configured bootstrap host array.

	--test-exit-timeout=FSD

	After a broker exits, kill the other brokers after a timeout (default 20s).

	--test-exit-mode=MODE

	Set the mode for the exit timeout. If set to leader, the exit timeout
is only triggered upon exit of the leader broker, and the flux-start exit
code is that of the leader broker. If set to any, the exit timeout
is triggered upon exit of any broker, and the flux-start exit code is the
highest exit code of all brokers. Default: any.

	--test-start-mode=MODE

	Set the start mode. If set to all, all brokers are started immediately.
If set to leader, only the leader is started. Hint: in leader mode,
use --setattr=broker.quorum=0 to let the initial program start before
the other brokers are online. Default: all.

	--test-rundir=PATH

	Set the directory to be used as the broker rundir instead of creating a
temporary one. The directory must exist, and is not cleaned up unless
--test-rundir-cleanup is also specified.

	--test-rundir-cleanup

	Recursively remove the directory specified with --test-rundir upon
completion of flux-start.

	--test-pmi-clique=MODE

	Set the pmi clique mode, which determines how PMI_process_mapping is set
in the PMI server used to bootstrap the brokers. If none, the mapping
is not created. If single, all brokers are placed in one clique.
Default: single.

VERBOSITY LEVELS

	level 1 and above

	Display commands before executing them.

	level 2 and above

	Trace PMI server requests (test mode only).

EXAMPLES

Launch an 8-way local Flux instance with an interactive shell as the
initial program and all logs output to stderr:

flux start -s8 -o,--setattr=log-stderr-level=7

Launch an 8-way Flux instance within a slurm job, with an interactive
shell as the initial program:

srun --pty -N8 flux start

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-broker(1)

flux-shell(1)

SYNOPSIS

flux-shell [OPTIONS] JOBID

DESCRIPTION

flux-shell(1), the Flux job shell, is the component of Flux which manages
the startup and execution of user jobs. flux-shell(1) runs as the job user,
reads the jobspec and assigned resource set R for the job from the KVS,
and using this data determines what local job tasks to execute. While
job tasks are running, the job shell acts as the interface between the
Flux instance and the job by handling standard I/O, signals, and finally
collecting the exit status of tasks as they complete.

The design of the Flux job shell allows customization through a set of
builtin and runtime loadable shell plugins. These plugins are used to
handle standard I/O redirection, PMI, CPU and GPU affinity, debugger
support and more. Details of the flux-shell(1) plugin capabilities and
design can be found in the PLUGINS section below.

flux-shell(1) also supports configuration via a Lua-based configuration
file, called the shell initrc, from which shell plugins may be loaded
or shell options and data examined or set. The flux-shell(1) initrc may
even extend the shell itself via simple shell plugins developed directly
in Lua. See the SHELL INITRC section below for details of the initrc
format and features.

Most Flux users will interact with flux-shell(1) indirectly through
the execution of Flux jobs, however flux-shell(1) accepts the following
OPTIONS in standalone mode (-s, --standalone), for testing purposes.

OPTIONS

	-h, --help

	Summarize available options.

	-v, --verbose

	Log actions to stderr.

	--initrc=FILE

	Load shell initrc from FILE instead of the system default.

	-R, --resources=FILE

	Load resource set R from a file instead of job-info service. This is
used for testing.

	-j, --jobspec=FILE

	Load jobspec from FILE instead of job-info service. This is used for
testing.

	-s, --standalone

	Run as as a local program without Flux instance. Used for testing.
In standalone mode an initrc file is not loaded unless specifically
requested via the --initrc option or specified in jobspec.

OPERATION

When a job has been granted resources by a Flux instance, a flux-shell(1)
process is invoked on each broker rank involved in the job. The job
shell runs as the job user, and will always have FLUX_KVS_NAMESPACE
set such that the root of the job shell's KVS accesses will be the guest
namespace for the job.

Each flux-shell(1) connects to the local broker, fetches the jobspec and
resource set R for the job from the job-info module, and uses this
information to plan which tasks to locally execute.

Once the job shell has successfully gathered job information, the
flux-shell(1) then goes through the following general steps to manage
execution of the job:

	register service endpoint specific to the job and userid,
typically <userid>-shell-<jobid>

	load the system default initrc.lua
($sysconfdir/flux/shell/initrc.lua), unless overridden by
configuration (See JOBSPEC OPTIONS and INITRC sections below)

	call shell.init plugin callbacks

	change working directory to the cwd of the job

	enter a barrier to ensure shell initialization is complete on all shells

	emit shell.init event to exec.eventlog

	create all local tasks. For each task, the following procedure is used

	call task.init plugin callback

	launch task, call task.exec plugin callback just before execve(2)

	call task.fork plugin callback

	once all tasks have started, call shell.start plugin callback

	enter shell "start" barrier

	emit shell.start event, after which all tasks are known running

	for each exiting task:

	call task.exit plugin callback

	collect exit status

	call shell.exit plugin callback when all tasks have exited.

	exit with max task exit code

PLUGINS

The job shell supports external and builtin plugins which implement most
of the advanced job shell features. Job shell plugins are loaded into
a plugin stack by name, where the last loaded name wins. Therefore, to
override a builtin plugin, an alternate plugin which registers the same
name may be loaded at runtime.

Note

Job shell plugins should be written with the assumption their access
to Flux services may be restricted as a guest.

C plugins are defined using the Flux standard plugin format. A shell C
plugin should therefore export a single symbol flux_plugin_init(), in
which calls to flux_plugin_add_handler(3) should be used to register
functions which will be invoked at defined points during shell execution.
These callbacks are defined by "topic strings" to which plugins can
"subscribe" by calling flux_plugin_add_handler(3) and/or
flux_plugin_register(3) with topic glob(7) strings.

Note

flux_plugin_init(3) is not called for builtin shell plugins. If
a dynamically loaded plugin wishes to set shell options to influence
a shell builtin plugin (e.g. to disable its operation), it should
therefore do so in flux_plugin_init() in order to guarantee that
the shell option is set before the builtin attempts to read them.

Simple plugins may also be developed directly in the shell initrc.lua
file itself (see INITRC section, plugin.register() below)

By default, flux-shell supports the following plugin callback topics:

	shell.connect

	Called just after the shell connects to the local Flux broker. (Only
available to builtin shell plugins.)

	shell.init

	Called after the shell has finished fetching and parsing the
jobspec and R from the KVS, but before any tasks
are started.

	task.init

	Called for each task after the task info has been constructed
but before the task is executed.

	task.exec

	Called for each task after the task has been forked just before
execve(2) is called. This callback is made from within the
task process.

	task.fork

	Called for each task after the task if forked from the parent
process (flux-shell process)

	task.exit

	Called for each task after it exits and wait_status is available.

	shell.start

	Called after all local tasks have been started. The shell "start"
barrier is called just after this callback returns.

	shell.log

	Called by the shell logging facility when a shell component
posts a log message.

	shell.log-setlevel

	Called by the shell logging facility when a request to set the
shell loglevel is made.

Note however, that plugins may also call into the plugin stack to create
new callbacks at runtime, so more topics than those listed above may be
available in a given shell instance.

JOBSPEC OPTIONS

On startup, flux-shell will examine the jobspec for any shell specific
options under the attributes.system.shell.options key. These options
may be set by the flux-mini -o, --setopt=OPT option, or explicitly
added to the jobspec by other means.

Job shell options may be switches to enable or disable a shell feature or
plugin, or they may take an argument. Because jobspec is a JSON document,
job shell options in jobspec may take arguments that are themselves
JSON objects. This allows maximum flexibility in runtime configuration
of optional job shell behavior. In the list below, if an option doesn't
include a =, then it is a simple boolean option or switch and may be
specified simply with -o option in commands like flux mini run.

Options supported by flux-shell proper include:

	verbose=INT

	Set the shell verbosity to INT. A larger value indicates increased
verbosity, though setting this value larger than 2 currently has no
effect.

	initrc=FILE

	Load flux-shell initrc.lua file from FILE instead of the default
initrc path. For details of the job shell initrc.lua file format,
see the INITRC section below.

Job shell plugins may also support configuration via shell options in
the jobspec. For specific information about runtime-loaded plugins,
see the documentation for the specific plugin in question. The following
options are supported by the builtin plugins of flux-shell:

	pty

	Allocate a pty for the first task rank.

	cpu-affinity=OPT

	Adjust the operation of the builtin shell affinity plugin.
OPT may be set to off to disable the affinity plugin, or
per-task to have CPU affinity applied on a per task basis.
The default is on, which binds all tasks to the assigned set
of cores in the job.

	gpu-affinity=OPT

	Adjust operation of the builtin shell gpubind plugin, which simply
sets CUDA_VISIBLE_DEVICES to the GPU IDs allocated to the job.
OPT may be set to off to disable the plugin, or per-task
to divide allocated GPUs among tasks launched by the shell (sets a
different GPU ID or IDs for each launched task)

	stop-tasks-in-exec

	Stops tasks in exec() using PTRACE_TRACEME. Used for debugging
parallel jobs. Users should not need to set this option directly.

	output.{stdout,stderr}.type=TYPE

	Set job output to for stderr or stdout to TYPE. TYPE may
be one of term, kvs or file (Default: kvs). If only
output.stdout.type is set, then this option applies to both
stdout and stderr. If set to file, then output.<stream>.path
must also be set for the stream. Most users will not need to set
this option directly, as it will be set automatically by options
of higher level commands such as flux-mini.

	output.{stdout,stderr}.path=PATH

	Set job stderr/out file output to PATH.

	input.stdin.type=TYPE

	Set job input for stdin to TYPE. TYPE may be either service
or file. Users should not need to set this option directly as it
will be handled by options of higher level commands like flux-mini.

	exit-timeout=VALUE

	A fatal exception is raised on the job 30s after the first task exits.
The timeout period may be altered by providing a different value in
Flux Standard Duration form. A value of none disables generation of
the exception.

	exit-on-error

	If the first task to exit was signaled or exited with a nonzero status,
raise a fatal exception on the job immediately.

SHELL INITRC

At initialization, flux-shell(1) reads a Lua initrc file which can be used
to customize the shell operation. The initrc is loaded by default from
$sysconfdir/flux/shell/initrc.lua (or /etc/flux/shell/initrc.lua
for a "standard" install), but a different path may be specified when
launching a job via the initrc shell option.

A job shell initrc file may be used to adjust the shell plugin searchpath,
load specific plugins, read and set shell options, and even extend the
shell itself using Lua.

Since the job shell initrc is a Lua file, any Lua syntax is
supported. Job shell specific functions and tables are described below:

	plugin.searchpath

	The current plugin searchpath. This value can be queried, set,
or appended. E.g. to add a new path to the plugin search path:
plugin.searchpath = plugin.searchpath + ':' + path

	plugin.load({file=glob, [conf=table]})

	Explicitly load one more shell plugins. This function takes a table
argument with file and conf arguments. The file argument
is a glob of one or more plugins to load. If an absolute path is not
specified, then the glob will be relative to plugin.searchpath.
E.g. plugin.load { file = "*.so" } will load all .so plugins in
the current search path. The conf option allows static configuration
values to be passed to plugin initialization functions when supported.

For example a plugin test.so may be explicitly loaded with
configuration via:

plugin.load { file = "test.so", conf = { value = "foo" } }

	plugin.register({name=plugin_name, handlers=handlers_table)

	Register a Lua plugin. Requires a table argument with the plugin name
and a set of handlers. handlers_table is an array of tables, each
of which must define topic, a topic glob of shell plugin callbacks to
which to subscribe, and fn a handler function to call for each match

For example, the following plugin would log the topic string for
every possible plugin callback (except for callbacks which are made
before the shell logging facility is initialized)

plugin.register {
 name = "test",
 handlers = {
 { topic = "*",
 fn = function (topic) shell.log ("topic="..topic) end
 },
 }
}

	source(glob)

	Source another Lua file or files. Supports specification of a glob,
e.g. source ("*.lua"). This function fails if a non-glob argument
specifies a file that does not exist, or there is an error loading or
compiling the Lua chunk.

	source_if_exists(glob)

	Same as source(), but do not throw an error if the target file does
not exist.

	shell.rcpath

	The directory in which the current initrc file resides.

	shell.getenv([name])

	Return the job environment (not the job shell environment). This is
the environment which will be inherited by the job tasks. If called
with no arguments, then the entire environment is copied to a table
and returned. Otherwise, acts as flux_shell_getenv(3) and returns
the value for the environment variable name, or nil if not set.

	shell.setenv(var, val, [overwrite])

	Set environment variable var to value val in the job environment.
If overwrite is set and is 0 or false then do not overwrite
existing environment variable value.

	shell.unsetenv(var)

	Unset environment variable var in job environment.

	shell.options

	A virtual index into currently set shell options, including those
set in jobspec. This table can be used to check jobspec options,
and even to force certain options to a value by default e.g.
shell.options['cpu-affinity'] = "per-task", would force
cpu-affinity shell option to per-task.

	shell.options.verbose

	Current flux-shell verbosity. This value may be changed at runtime,
e.g. shell.options.verbose = 2 to set maximum verbosity.

	shell.options.standalone

	True if the shell is running in "standalone" mode for testing.

	shell.info

	Returns a Lua table of shell information obtained via
flux_shell_get_info(3). This table includes

	jobid

	The current jobid.

	rank

	The rank of the current shell within the job.

	size

	The number of flux-shell processes participating in this job.

	ntasks

	The total number of tasks in this job.

	service

	The service string advertised by the shell.

	options.verbose

	True if the shell is running in verbose mode.

	options.standalone

	True if the shell was run in standalone mode.

	jobspec

	The jobspec of the current job

	R

	The resource set R of the current job

	shell.rankinfo

	Returns a Lua table of rank-specific shell information for the
current shell rank. See shell.get_rankinfo() for a description
of the members of this table.

	shell.get_rankinfo(shell_rank)

	Query rank-specific shell info as in the function call
flux_shell_get_rank_info(3). If shell_rank is not provided
then the current rank is used. Returns a table of rank-specific
information including:

	broker_rank

	The broker rank on which shell_rank is running.

	ntasks

	The number of local tasks assigned to shell_rank.

	resources

	A table of resources by name (e.g. "core", "gpu") assigned to
shell_rank, e.g. { core = "0-1", gpu = "0" }.

	shell.log(msg), shell.debug(msg), shell.log_error(msg)

	Log messages to the shell log facility at INFO, DEBUG, and ERROR
levels respectively.

	shell.die(msg)

	Log a FATAL message to the shell log facility. This generates a
job exception and will terminate the job.

The following task-specific initrc data and functions are available
only in one of the task.* plugin callbacks. An error will be
generated if they are accessed from any other context.

	task.info

	Returns a Lua table of task specific information for the "current"
task (see flux_shell_task_get_info(3)). Included members of
the task.info table include:

	localid

	The local task rank (i.e. within this shell)

	rank

	The global task rank (i.e. within this job)

	state

	The current task state name

	pid

	The process id of the current task (if task has been started)

	wait_status

	(Only in task.exit) The status returned by waitpid(2) for
this task.

	exitcode

	(Only in task.exit) The exit code if WIFEXTED() is true.

	signaled

	(Only in task.exit) If task was signaled, this member will be
non-zero integer signal number that caused the task to exit.

	task.getenv(var)

	Get the value of environment variable var if set in the current
task's environment. This function reads the environment from the
underlying flux_cmd_t for a shell task, and thus only makes sense
before a task is executed, e.g. in task.init and task.exec
callbacks.

	task.unsetenv(var)

	Unset environment variable var for the current task. As with
task.getenv() this function is only valid before a task has
been started.

	task.setenv(var, value, [overwrite])

	Set environment variable var to val for the current task.
If overwrite is set to 0 or false, then do not overwrite
any current value. As with task.getenv() and task.unsetenv(),
this function only has an effect before the task is started.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-mini(1)

flux-version(1)

SYNOPSIS

flux version

DESCRIPTION

flux-version(1) prints version information for flux components.
At a minimum, the version of flux commands and the currently linked
libflux-core.so library is displayed. If running within an instance,
the version of the flux-broker found and FLUX_URI are also included.
Finally, if flux is compiled against flux-security, then the version
of the currently linked libflux-security is included.

RESOURCES

Github: http://github.com/flux-framework

flux(1)

SYNOPSIS

flux [OPTIONS] CMD [CMD-OPTIONS]

DESCRIPTION

Flux is a modular framework for resource management.

flux(1) is a front end for Flux sub-commands.
"flux -h" summarizes the core Flux commands.
"flux help CMD" displays the manual page for CMD.

If CMD contains a slash "/" character, it is executed directly,
bypassing the sub-command search path.

OPTIONS

	-h, --help

	Display help on options, and a list of the core Flux sub-commands.

	-p, --parent

	If current instance is a child, connect to parent instead. Also sets
FLUX_KVS_NAMESPACE if current instance is confined to a KVS namespace
in the parent. This option may be specified multiple times.

	-v, --verbose

	Display command environment, and the path search for CMD.

	-V, --version

	Convenience option to run flux-version(1).

SUB-COMMAND ENVIRONMENT

flux(1) uses compiled-in install paths and its environment
to construct the environment for sub-commands.

	Sub-command search path

	Look for "flux-CMD" executable by searching a path constructed
with the following prototype:

[getenv FLUX_EXEC_PATH_PREPEND]:install-path:\
 [getenv FLUX_EXEC_PATH]

	setenv FLUX_MODULE_PATH

	Set up broker module search path according to:

[getenv FLUX_MODULE_PATH_PREPEND]:install-path:\
 [getenv FLUX_MODULE_PATH]

	setenv FLUX_CONNECTOR_PATH

	Set up search path for connector modules used by libflux to open a connection
to the broker

[getenv FLUX_CONNECTOR_PATH_PREPEND]:install-path:\
 [getenv FLUX_CONNECTOR_PATH]

	setenv FLUX_SEC_DIRECTORY

	Set directory for Flux CURVE keys. This is not a search path.
If unset, flux(1) sets it to $HOME/flux.

	setenv LUA_PATH

	Set Lua module search path:

[getenv FLUX_LUA_PATH_PREPEND];[getenv LUA_PATH];install-path;

	setenv LUA_CPATH

	Set Lua binary module search path:

[getenv FLUX_LUA_CPATH_PREPEND];[getenv LUA_CPATH];install-path;

	setenv PYTHONPATH

	Set Python module search path:

[getenv FLUX_PYTHONPATH_PREPEND]:[getenv PYTHONPATH];install-path

RESOURCES

Github: http://github.com/flux-framework

man3

C Library Functions

	flux_attr_get(3)

	flux_aux_set(3)

	flux_child_watcher_create(3)

	flux_content_load(3)

	flux_core_version(3)

	flux_event_decode(3)

	flux_event_publish(3)

	flux_event_subscribe(3)

	flux_fatal_set(3)

	flux_fd_watcher_create(3)

	flux_flags_set(3)

	flux_future_and_then(3)

	flux_future_create(3)

	flux_future_get(3)

	flux_future_wait_all_create(3)

	flux_get_rank(3)

	flux_get_reactor(3)

	flux_handle_watcher_create(3)

	flux_idle_watcher_create(3)

	flux_kvs_commit(3)

	flux_kvs_copy(3)

	flux_kvs_getroot(3)

	flux_kvs_lookup(3)

	flux_kvs_namespace_create(3)

	flux_kvs_txn_create(3)

	flux_log(3)

	flux_msg_cmp(3)

	flux_msg_encode(3)

	flux_msg_handler_addvec(3)

	flux_msg_handler_create(3)

	flux_open(3)

	flux_periodic_watcher_create(3)

	flux_pollevents(3)

	flux_reactor_create(3)

	flux_watcher_now(3)

	flux_recv(3)

	flux_request_decode(3)

	flux_request_encode(3)

	flux_requeue(3)

	flux_respond(3)

	flux_response_decode(3)

	flux_rpc(3)

	flux_send(3)

	flux_shell_add_completion_ref(3)

	flux_shell_add_event_context(3)

	flux_shell_add_event_handler(3)

	flux_shell_aux_set(3)

	flux_shell_current_task(3)

	flux_shell_get_flux(3)

	flux_shell_get_info(3)

	flux_shell_get_jobspec_info(3)

	flux_shell_getenv(3)

	flux_shell_getopt(3)

	flux_shell_killall(3)

	flux_shell_log(3)

	flux_shell_plugstack_call(3)

	flux_shell_rpc_pack(3)

	flux_shell_service_register(3)

	flux_shell_task_channel_subscribe(3)

	flux_shell_task_get_info(3)

	flux_shell_task_subprocess(3)

	flux_signal_watcher_create(3)

	flux_stat_watcher_create(3)

	flux_sync_create(3)

	flux_timer_watcher_create(3)

	flux_watcher_start(3)

	idset_create(3)

	idset_encode(3)

	idset_add(3)

	flux_jobtap_get_flux(3)

flux_attr_get(3)

SYNOPSIS

#include <flux/core.h>

const char *flux_attr_get (flux_t *h, const char *name);

int flux_attr_set (flux_t *h, const char *name, const char *val);

DESCRIPTION

Flux broker attributes are both a simple, general-purpose key-value
store with scope limited to the local broker rank, and a method for the
broker to export information needed by Flux services and utilities.

flux_attr_get() retrieves the value of the attribute name.

Attributes that have the broker tags as immutable are cached automatically
in the flux_t handle. For example, the "rank" attribute is a frequently
accessed attribute whose value never changes. It will be cached on the first
access and thereafter does not require an RPC to the broker to access.

flux_attr_set() updates the value of attribute name to val.
If name is not currently a valid attribute, it is created.
If val is NULL, the attribute is unset.

RETURN VALUE

flux_attr_get() returns the requested value on success. On error, NULL
is returned and errno is set appropriately.

flux_attr_set() returns zero on success. On error, -1 is returned
and errno is set appropriately.

ERRORS

	ENOENT

	The requested attribute is invalid or has a NULL value on the broker.

	EINVAL

	Some arguments were invalid.

	EPERM

	Set was attempted on an attribute that is not writable with the
user's credentials.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-lsattr(1), flux-getattr(1), flux-setattr(1), flux-broker-attributes(7),
RFC 3: CMB1 - Flux Comms Message Broker Protocol [https://github.com/flux-framework/rfc/blob/master/spec_3.rst]

flux_aux_set(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_free_f)(void *arg);

void *flux_aux_get (flux_t *h, const char *name);

int flux_aux_set (flux_t *h, const char *name,
 void *aux, flux_free_f destroy);

DESCRIPTION

flux_aux_set() attaches application-specific data
to the parent object h. It stores data aux by key name,
with optional destructor destroy. The destructor, if non-NULL,
is called when the parent object is destroyed, or when
key is overwritten by a new value. If aux is NULL,
the destructor for a previous value, if any is called,
but no new value is stored. If name is NULL,
aux is stored anonymously.

flux_aux_get() retrieves application-specific data
by name. If the data was stored anonymously, it
cannot be retrieved. Note that flux_aux_get() does not scale to a
large number of items, and flux module handles may persist for a long
time.

Names beginning with "flux::" are reserved for internal use.

RETURN VALUE

flux_aux_get() returns data on success, or NULL on failure, with errno set.

flux_aux_set() returns 0 on success, or -1 on failure, with errno set.

ERRORS

	EINVAL

	Some arguments were invalid.

	ENOMEM

	Out of memory.

	ENOENT

	flux_aux_get() could not find an entry for key.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3)

flux_child_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_child_watcher_create (flux_reactor_t *r,
 int pid, bool trace,
 flux_watcher_f cb, void *arg);

int flux_child_watcher_get_rpid (flux_watcher_t *w);

int flux_child_watcher_get_rstatus (flux_watcher_t *w);

DESCRIPTION

flux_child_watcher_create() creates a reactor watcher that
monitors state transitions of child processes. If trace is false,
only child termination will trigger an event; otherwise, stop and start
events may be generated.

The callback revents argument should be ignored.

The process id that had a transition may be obtained by calling
flux_child_watcher_get_rpid().

The status value returned by waitpid(2) may be obtained by calling
flux_child_watcher_get_rstatus().

Only a Flux reactor created with the FLUX_REACTOR_SIGCHLD flag can
be used with child watchers, as the reactor must register a SIGCHLD
signal watcher before any processes are spawned. Only one reactor instance
per program may be created with this capability.

RETURN VALUE

flux_child_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

	EINVAL

	Reactor was not created with FLUX_REACTOR_SIGCHLD.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_content_load(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_content_load (flux_t *h,
 const char *blobref,
 int flags);

int flux_content_load_get (flux_future_t *f,
 const void **buf,
 size_t *len);

flux_future_t *flux_content_store (flux_t *h,
 const void *buf,
 size_t len,
 int flags);

int flux_content_store_get (flux_future_t *f,
 const char **ref);

DESCRIPTION

The Flux content service is an append-only, immutable, content addressed
data storage service unique to each Flux instance, described in RFC 10.
All functions described below are idempotent.

flux_content_load() sends a request to the content service
to load a data blob by blobref, a hash digest whose format
is described in RFC 10. A flux_future_t object which encapsulates the
remote procedure call state is returned. flags is a mask that may
include the values described below.

flux_request_load_get() completes a load operation, blocking on
response(s) if needed, parsing the result, and returning the requested
blob in buf and its length in len. buf is valid until
flux_future_destroy() is called.

flux_content_store() sends a request to the content service
to store a data blob buf of length len. A flux_future_t
object which encapsulates the remote procedure call state is returned.
flags is a mask that may include the values described below.

flux_content_store_get() completes a store operation, blocking on
response(s) if needed, and returning a blobref that can be used to
retrieve the stored blob. The blobref string is valid until
flux_future_destroy() is called.

These functions may be used asynchronously.
See flux_future_then(3) for details.

FLAGS

The following are valid bits in a flags mask passed as an argument
to flux_content_load() or flux_content_store().

	CONTENT_FLAG_CACHE_BYPASS

	Send the request directly to the backing store (default sqlite),
bypassing the cache.

	CONTENT_FLAG_UPSTREAM

	Direct the request to the next broker upstream on the TBON rather
than to the local broker.

RETURN VALUE

flux_content_load() and flux_content_store() return a
flux_future_t on success, or NULL on failure with errno set appropriately.

flux_content_load_get() and flux_content_store_get()
return 0 on success, or -1 on failure with errno set appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

	ENOENT

	An unknown blob was requested.

	EPROTO

	A request was malformed.

	EFBIG

	A blob larger than the configured maximum blob size
could not be stored. See flux-broker-attributes(7).

	ENOSYS

	The CONTENT_FLAG_CACHE_BYPASS flag was set in a request, but no
backing store module is loaded.

	EHOSTUNREACH

	The CONTENT_FLAG_UPSTREAM flag was set in a request received by
the rank 0 broker.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_rpc(3), flux_future_get(3)

RFC 10: Content Storage Service [https://github.com/flux-framework/rfc/blob/master/spec_10.rst]

flux_core_version(3)

SYNOPSIS

#include <flux/core.h>

int flux_core_version (int *major, int *minor, int *patch);

const char *flux_core_version_string (void);

DESCRIPTION

flux-core defines several macros and functions to let API users determine
the version they are working with. A version has three components
(major, minor, patch), accessible with the following macros:

	FLUX_CORE_VERSION_MAJOR

	(integer) incremented when there are incompatible API changes

	FLUX_CORE_VERSION_MINOR

	(integer) incremented when functionality is added in a backwards-compatible
manner

	FLUX_CORE_VERSION_PATCH

	(integer) incremented when bug fixes are added in a backwards-compatible manner

These definitions conform to the semantic versioning standard (see below).
In addition, the following convenience macros are available:

	FLUX_CORE_VERSION_HEX

	(hex) the three versions combined into a three-byte integer value,
useful for comparing versions with <, =, and > operators.

	FLUX_CORE_VERSION_STRING

	(string) the three versions above separated by periods, with optional
git-describe(1) suffix preceded by a hyphen, if the version is a
development snapshot.

Note that major version zero (0.y.z) is for initial development.
Under version zero, the public API should not be considered stable.

Functions are also available to access the same values. While the header
macros tell what version of flux-core your program was compiled against,
the functions tell what version your program is dynamically linked with.

flux_core_version() sets major, minor, and patch to the values of
the macros above. If any parameters are NULL, no assignment is attempted.

flux_core_version_string() returns the string value.

RETURN VALUE

flux_core_version () returns the hex version.

flux_core_version_string () returns the version string

ERRORS

These functions cannot fail.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

semver.org[Semantic Versioning 2.0.0]

flux_event_decode(3)

SYNOPSIS

#include <flux/core.h>

int flux_event_decode (const flux_msg_t *msg,
 const char **topic,
 const char **s);

int flux_event_decode_raw (const flux_msg_t *msg,
 const char **topic,
 const void **data, int *len);

int flux_event_unpack (const flux_msg_t *msg,
 const char **topic,
 const char *fmt, ...);

flux_msg_t *flux_event_encode (const char *topic,
 const char *s);

flux_msg_t *flux_event_encode_raw (const char *topic,
 const void *data, int len);

flux_msg_t *flux_event_pack (const char *topic,
 const char *fmt, ...);

DESCRIPTION

flux_event_decode() decodes a Flux event message msg.

topic, if non-NULL, will be set to the message's topic string. The storage
for this string belongs to msg and should not be freed.

s, if non-NULL, will be set to the message's NULL-terminated string payload.
If no payload exists, it is set to NULL. The storage for this string belongs
to msg and should not be freed.

flux_event_decode_raw() decodes an event message with a raw payload,
setting data and len to the payload data and length. The storage for
the raw payload belongs to msg and should not be freed.

flux_event_unpack() decodes a Flux event message with a JSON payload as
above, parsing the payload using variable arguments with a format string
in the style of jansson's json_unpack() (used internally). Decoding fails
if the message doesn't have a JSON payload.

flux_event_encode() encodes a Flux event message with topic string topic
and optional NULL-terminated string payload s. The newly constructed
message that is returned must be destroyed with flux_msg_destroy().

flux_event_encode_raw() encodes a Flux event message with topic
string topic. If data is non-NULL, its contents will be used as
the message payload, and the payload type set to raw.

flux_event_pack() encodes a Flux event message with a JSON payload as
above, encoding the payload using variable arguments with a format string
in the style of jansson's json_pack() (used internally). Decoding fails
if the message doesn't have a JSON payload.

Events propagated to all subscribers. Events will not be received
without a matching subscription established using flux_event_subscribe().

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

DECODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_unpack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a JSON string to a pointer to a null terminated UTF-8 string.
The resulting string is extracted by using 'json_string_value()'
internally, so it exists as long as there are still references to the
corresponding JSON string.

	n (null)

	Expect a JSON null value. Nothing is extracted.

	b (boolean)['int']

	Convert a JSON boolean value to a C int, so that true is converted to 1
and false to 0.

	i (integer)['int']

	Convert a JSON integer to a C int.

	I (integer)['int64_t']

	Convert a JSON integer to a C int64_t.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert JSON real to a C double.

	F (real)['double']

	Convert JSON number (integer or real) to a C double.

	o (any value)['json_t *']

	Store a JSON value, with no conversion, to a json_t pointer.

	O (any value)['json_t *']

	Like o, but the JSON value's reference count is incremented.

	[fmt] (array)

	Convert each item in the JSON array according to the inner format
string. fmt may contain objects and arrays, i.e. recursive value
extraction is supported.

	{fmt} (object)

	Convert each item in the JSON object according to the inner format
string fmt. The first, third, etc. format specifier represent a
key, and must by s. The corresponding argument to unpack functions
is read as the object key. The second, fourth, etc. format specifier
represent a value and is written to the address given as the corresponding
argument. Note that every other argument is read from and every other
is written to. fmt may contain objects and arrays as values, i.e.
recursive value extraction is supported. Any s representing a key
may be suffixed with ? to make the key optional. If the key is not
found, nothing is extracted.

	!

	This special format specifier is used to enable the check that all
object and array items are accessed, on a per-value basis. It must
appear inside an array or object as the last format specifier before
the closing bracket or brace.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Parsing and Validating Values [http://jansson.readthedocs.io/en/2.6/apiref.html#parsing-and-validating-values]

RETURN VALUE

Decoding functions return 0 on success. On error, -1 is returned, and
errno is set appropriately.

Encoding functions return a message on success. On error, NULL is returned,
and errno is set appropriately.

ERRORS

	EINVAL

	The msg argument was NULL or there was a problem encoding.

	ENOMEM

	Memory was unavailable.

	EPROTO

	Message decoding failed, such as due to incorrect message type,
missing topic string, etc..

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_event_subscribe(3)

flux_event_publish(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_event_publish (flux_t *h,
 const char *topic, int flags,
 const char *s);

flux_future_t *flux_event_publish_pack (flux_t *h,
 const char *topic, int flags,
 const char *fmt, ...);

flux_future_t *flux_event_publish_raw (flux_t *h,
 const char *topic, int flags,
 const void *data, int len);

int flux_event_publish_get_seq (flux_future_t *f, int *seq);

DESCRIPTION

flux_event_publish() sends an event message with topic string topic,
flags as described below, and optional payload s, a NULL-terminated
string, or NULL indicating no payload. The returned future is
fulfilled once the event is accepted by the broker and assigned a
global sequence number.

flux_event_publish_pack() is similar, except the JSON payload
is constructed using json_pack() style arguments (see below).

flux_event_publish_raw() is similar, except the payload is raw data
of length len.

flux_event_publish_get_seq() may be used to retrieve the sequence
number assigned to the message once the future is fulfilled.

CONFIRMATION SEMANTICS

All Flux events are "open loop" in the sense that publishers get no
confirmation that subscribers have received a message. However,
the above functions do confirm, upon fulfillment of the returned future,
that the published event has been received by the broker and assigned
a global sequence number.

Gaps in the sequence trigger the logging of errors currently, and in
the future will trigger recovery of lost events, so these confirmations
do indicate that Flux's best effort at event propagation is under way.

If this level of confirmation is not required, one may encode
an event message directly using flux_event_encode(3) and related
functions and send it directly with flux_send(3).

FLAGS

The flags argument in the above functions must be zero, or the
logical OR of the following values:

	FLUX_MSGFLAG_PRIVATE

	Indicates that the event should only be visible to the instance owner
and the sender.

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

RETURN VALUE

These functions return a future on success. On error, NULL is returned,
and errno is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

	ENOMEM

	Out of memory.

	EPROTO

	A protocol error was encountered.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_event_decode(3), flux_event_subscribe(3)

flux_event_subscribe(3)

SYNOPSIS

#include <flux/core.h>

int flux_event_subscribe (flux_t *h, const char *topic);

int flux_event_unsubscribe (flux_t *h, const char *topic);

DESCRIPTION

Flux events are broadcast across the session, but are only delivered
to handles that subscribe to them by topic. Topic strings consist of
one or more words separated by periods, interpreted as a hierarchical
name space.

flux_event_subscribe() requests that event messages matching topic
be delivered via flux_recv(3). A match consists of a string comparison
of the event topic and the subscription topic, up to the length of the
subscription topic. Thus "foo." matches events with topics "foo.bar"
and "foo.baz", and "" matches all events. This matching algorithm
is inherited from ZeroMQ. Globs or regular expressions are not allowed
in subscriptions, and the period delimiter is included in the comparison.

flux_event_unsubscribe() unsubscribes to a topic. The topic
argument must exactly match that provided to flux_event_subscribe().

Duplicate subscriptions are allowed in the subscription list but
will not result in multiple deliveries of a given message. Each
duplicate subscription requires a separate unsubscribe.

It is not necessary to remove subscriptions with flux_event_unsubscribe()
prior to calling flux_close(3).

RETURN VALUE

These functions return 0 on success. On error, -1 is returned,
and errno is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

	ENOMEM

	Out of memory.

EXAMPLES

This example opens the Flux broker, subscribes to heartbeat messages,
displays one, then quits.

#include <flux/core.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 flux_msg_t *msg;
 const char *topic;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");
 if (flux_event_subscribe (h, "heartbeat.pulse") < 0)
 log_err_exit ("flux_event_subscribe");
 if (!(msg = flux_recv (h, FLUX_MATCH_EVENT, 0)))
 log_err_exit ("flux_recv");
 if (flux_msg_get_topic (msg, &topic) < 0)
 log_err_exit ("flux_msg_get_topic");
 printf ("Event: %s\n", topic);
 if (flux_event_unsubscribe (h, "heartbeat.pulse") < 0)
 log_err_exit ("flux_event_unsubscribe");
 flux_msg_destroy (msg);
 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

flux_fatal_set(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_fatal_f)(const char *msg, void *arg);

void flux_fatal_set (flux_t *h, flux_fatal_f fun, void *arg);

void flux_fatal_error (flux_t *h, const char *fun, const char *msg);

FLUX_FATAL (flux_t *h);

DESCRIPTION

flux_fatal_set() configures an optional fatal error function fun to
be called internally by libflux_core if an error occurs that is fatal
to the handle h. A fatal error is any error that renders the handle
unusable. The function may log msg, terminate the program,
or take other action appropriate to the application.

If a fatal error function is not registered, or if the fatal error
function returns, error handling proceeds as normal.

The fatal error function will only be called once, for the first
fatal error encountered.

arg is an optional argument passed through to the fatal error function.

FLUX_FATAL() is a macro that calls

	::

	flux_fatal_error (h, __FUNCTION__, strerror (errno))

which translates to a fatal error function called with msg set to
"function name: error string".

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3)

flux_fd_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_fd_watcher_create (flux_reactor_t *r,
 int fd, int events,
 flux_watcher_f callback,
 void *arg);

int flux_fd_watcher_get_fd (flux_watcher_t *w);

DESCRIPTION

flux_fd_watcher_create() creates a flux_watcher_t object which can be used
to monitor for events on a file descriptor fd. When events occur,
the user-supplied callback is invoked.

The events and revents arguments are a bitmask containing a logical
OR of the following bits. If a bit is set in events, it indicates
interest in this type of event. If a bit is set in revents, it
indicates that this event has occurred.

	FLUX_POLLIN

	The file descriptor is ready for reading.

	FLUX_POLLOUT

	The file descriptor is ready for writing.

	FLUX_POLLERR

	The file descriptor has encountered an error.
This bit is ignored if it is set in the create events argument.

Events are processed in a level-triggered manner. That is, the callback
will continue to be invoked as long as the event has not been
fully consumed or cleared, and the watcher has not been stopped.

flux_fd_watcher_get_fd() is used to obtain the file descriptor from
within the flux_watcher_f callback.

RETURN VALUE

flux_fd_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

flux_fd_watcher_get_fd() returns the file descriptor associated with
the watcher.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3).

flux_flags_set(3)

SYNOPSIS

#include <flux/core.h>

void flux_flags_set (flux_t *h, int flags);

void flux_flags_unset (flux_t *h, int flags);

int flux_flags_get (flux_t *h);

DESCRIPTION

flux_flags_set() sets new open flags in handle h. The resulting
handle flags will be a logical or of the old flags and the new.

flux_flags_unset() clears open flags in handle h. The resulting
handle flags will be a logical and of the old flags and the inverse of the new.

flux_flags_get() can be used to retrieve the current open flags from
handle h.

The valid flags are described in flux_open(3).

RETURN VALUE

flux_flags_get() returns the current flags.

ERRORS

These functions never fail.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3)

flux_future_and_then(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_future_and_then (flux_future_t *f,
 flux_continuation_f cb, void *arg);
flux_future_t *flux_future_or_then (flux_future_t *f,
 flux_continuation_f cb, void *arg);

int flux_future_continue (flux_future_t *prev, flux_future_t *f);
void flux_future_continue_error (flux_future_t *prev, int errnum,
 const char *errstr);

int flux_future_fulfill_next (flux_future_t *f,
 void *result,
 flux_free_f free_fn);

DESCRIPTION

See flux_future_get(3) for general functions that operate on futures,
and flux_future_create(3) for a description of the flux_future_t
base type. This page covers functions for the sequential composition of
futures, i.e. chains of dependent futures.

flux_future_and_then(3) is similar to flux_future_then(3), but
returns a future that may later be "continued" from the continuation
callback cb. The provided continuation callback cb is only
executed when the future argument f is fulfilled successfully. On
error, the error from f is automatically propagated to the "next"
future in the chain (returned by the function).

flux_future_and_then() is useful when a series of asynchronous
operations, each returning a flux_future_t, depend on the result
of a previous operation. That is, flux_future_and_then() returns a
placeholder future for an eventual future that can't be created until
the continuation cb is run. The returned future can then be
used as a synchronization handle or even passed to another
flux_future_and_then() in the chain. By default, the next future
in the chain will be fulfilled immediately using the result of the
previous future after return from the callback cb. Most callbacks,
however, should use either flux_future_continue(3) or
flux_future_continue_error(3) to pass an intermediate future
to use in fulfillment of the next future in the chain.

flux_future_or_then(3) is like flux_future_and_then(), except
the continuation callback cb is run when the future f is fulfilled
with an error. This function is useful for recovery or other error
handling (other than the default behavior of propagating an error
down the chain to the final result). The flux_future_or_then()
callback offers a chance to successfully fulfill the "next" future
in the chain, even when the "previous" future was fulfilled with
an error.

As with flux_future_and_then() the continuation
cb function for flux_future_or_then() should call
flux_future_continue() or flux_future_continue_error(), or
the result of the previous future will be propagated immediately
to the next future in the chain.

flux_future_continue(3) continues the next future embedded in prev
(created by flux_future_and_then() or flux_future_or_then()) with
the eventual result of the provided future f. This allows a future
that was not created until the context of the callback to continue
a sequential chain of futures created earlier. After the call to
flux_future_continue(3) completes, the future prev may safely be
destroyed. flux_future_continue(3) may be called with f equal
to NULL if the caller desires the next future in the chain to
not be fulfilled, in order to disable the automatic fulfillment
that normally occurs for non-continued futures after the callback
completes.

flux_future_continue_error(3) is like flux_future_continue()
but immediately fulfills the next future in the chain with an error and
an optional error string. Once flux_future_continue_error(3)
completes, the future prev may safely be destroyed.

flux_future_fulfill_next(3) is like flux_future_fulfill(3), but
fulfills the next future in the chain instead of the current future (which
is presumably already fulfilled). This call is useful when a chained future
is being used for post-processing a result from intermediate future-based
calls, as it allows the next future to be fulfilled with a custom result,
instead of with the value of another future as in
flux_future_continue(3).

RETURN VALUE

flux_future_and_then() and flux_future_or_then() return a flux_future_t
on success, or NULL on error. If both functions are called on the same
future, the returned flux_future_t from each will be the same object.

flux_future_continue() returns 0 on success, or -1 on error with errno
set.

flux_future_fulfill_next() returns 0 on success, or -1 with errno set
to EINVAL if the target future does not have a next future to fulfill.

ERRORS

	ENOMEM

	Out of memory.

	EINVAL

	Invalid argument.

	ENOENT

	The requested object is not found.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_future_create(3)

flux_future_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_future_init_f)(flux_future_t *f,
 flux_reactor_t *r, void *arg);

flux_future_t *flux_future_create (flux_future_init_f cb, void *arg);

void flux_future_fulfill (flux_future_t *f,
 void *result, flux_free_f free_fn);

void flux_future_fulfill_error (flux_future_t *f, int errnum,
 const char *errstr);

void flux_future_fulfill_with (flux_future_t *f, flux_future_t *p);

void flux_future_fatal_error (flux_future_t *f, int errnum,
 const char *errstr);

void *flux_future_aux_get (flux_future_t *f, const char *name);

int flux_future_aux_set (flux_future_t *f, const char *name,
 void *aux, flux_free_f destroy);

void flux_future_set_reactor (flux_future_t *f, flux_t *h);

flux_reactor_t *flux_future_get_reactor (flux_future_t *f);

void flux_future_set_flux (flux_future_t *f, flux_t *h);

flux_t *flux_future_get_flux (flux_future_t *f);

DESCRIPTION

See flux_future_get(3) for general functions that operate on futures.
This page covers functions primarily used when building classes that
return futures.

A Flux future represents some activity that may be completed with reactor
watchers and/or message handlers. It is intended to be returned by other
classes as a handle for synchronization and a container for results.
This page describes the future interfaces used by such classes.

A class that returns a future usually provides a creation function
that internally calls flux_future_create(), and may provide functions
to access class-specific result(s), that internally call flux_future_get().
The create function internally registers a flux_future_init_f
function that is called lazily by the future implementation to perform
class-specific reactor setup, such as installing watchers and message
handlers.

flux_future_create() creates a future and registers the
class-specific initialization callback cb, and an opaque argument
arg that will be passed to cb. The purpose of the initialization
callback is to set up class-specific watchers on a reactor obtained
with flux_future_get_reactor(), or message handlers on a flux_t
handle obtained with flux_future_get_flux(), or both.
flux_future_get_reactor() and flux_future_get_flux() return
different results depending on whether the initialization callback is
triggered by a user calling flux_future_then() or
flux_future_wait_for(). The function may be triggered in one or
both contexts, at most once for each. The watchers or message
handlers must eventually call flux_future_fulfill(),
flux_future_fulfill_error(), or flux_future_fatal_error() to
fulfill the future. See REACTOR CONTEXTS below for more information.

flux_future_fulfill() fulfills the future, assigning an opaque
result value with optional destructor free_fn to the future.
A NULL result is valid and also fulfills the future. The result
is contained within the future and can be accessed with flux_future_get()
as needed until the future is destroyed.

flux_future_fulfill_error() fulfills the future, assigning an
errnum value and an optional error string. After the future is
fulfilled with an error, flux_future_get() will return -1 with errno
set to errnum.

flux_future_fulfill_with() fulfills the target future f using a
fulfilled future p. This function copies the pending result or error
from p into f, and adds read-only access to the aux items for p
from f. This ensures that any get method which requires aux items
for p will work with f. This function takes a reference to the source
future p, so it safe to call flux_future_destroy (p) after this call.
flux_future_fulfill_with() returns -1 on error with errno
set on failure.

flux_future_fulfill(), flux_future_fulfill_with(), and
flux_future_fulfill_error() can be called multiple times to queue
multiple results or errors. When callers access future results via
flux_future_get(), results or errors will be returned in FIFO order.
It is an error to call flux_future_fulfill_with() multiple times on
the same target future f with a different source future p.

flux_future_fatal_error() fulfills the future, assigning an errnum
value and an optional error string. Unlike
flux_future_fulfill_error() this fulfillment can only be called once
and takes precedence over all other fulfillments. It is used for
catastrophic error paths in future fulfillment.

flux_future_aux_set() attaches application-specific data
to the parent object f. It stores data aux by key name,
with optional destructor destroy. The destructor, if non-NULL,
is called when the parent object is destroyed, or when
key is overwritten by a new value. If aux is NULL,
the destructor for a previous value, if any is called,
but no new value is stored. If name is NULL,
aux is stored anonymously.

flux_future_aux_get() retrieves application-specific data
by name. If the data was stored anonymously, it
cannot be retrieved.

Names beginning with "flux::" are reserved for internal use.

flux_future_set_reactor() may be used to associate a Flux reactor
with a future. The reactor (or a temporary one, depending on the context)
may be retrieved using flux_future_get_reactor().

flux_future_set_flux() may be used to associate a Flux broker handle
with a future. The handle (or a clone associated with a temporary reactor,
depending on the context) may be retrieved using flux_future_get_flux().

Futures may "contain" other futures, to arbitrary depth. That is, an
init callback may create futures and use their continuations to fulfill
the containing future in the same manner as reactor watchers and message
handlers.

REACTOR CONTEXTS

Internally, a future can operate in two reactor contexts. The initialization
callback may be called in either or both contexts, depending on which
synchronization functions are called by the user. flux_future_get_reactor()
and flux_future_get_flux() return a result that depends on which context
they are called from.

When the user calls flux_future_then(), this triggers a call to the
initialization callback. The callback would typically call
flux_future_get_reactor() and/or flux_future_get_flux() to obtain the
reactor or flux_t handle to be used to set up watchers or message handlers.
In this context, the reactor or flux_t handle are exactly the ones passed
to flux_future_set_reactor() and flux_future_set_flux().

When the user calls flux_future_wait_for(), this triggers the creation
of a temporary reactor, then a call to the initialization callback.
The temporary reactor allows these functions to wait only for the future's
events, without allowing unrelated watchers registered in the main reactor
to run, which might complicate the application's control flow. In this
context, flux_future_get_reactor() returns the temporary reactor, not
the one passed in with flux_future_set_reactor(). flux_future_get_flux()
returns a temporary flux_t handle cloned from the one passed to
flux_future_set_flux(), and associated with the temporary reactor.
After the internal reactor returns, any messages unmatched by the dispatcher
on the cloned handle are requeued in the main flux_t handle with
flux_dispatch_requeue().

Since the init callback may be made in either reactor context (at most once
each), and is unaware of which context that is, it should take care when
managing any context-specific state not to overwrite the state from a prior
call. The ability to attach objects with destructors anonymously to the future
with flux_future_aux_set() may be useful for managing the life cycle
of reactor watchers and message handlers created by init callbacks.

RETURN VALUE

flux_future_create() returns a future on success. On error, NULL is
returned and errno is set appropriately.

flux_future_aux_set() returns zero on success. On error, -1 is
returned and errno is set appropriately.

flux_future_aux_get() returns the requested object on success. On
error, NULL is returned and errno is set appropriately.

flux_future_get_flux() returns a flux_t handle on success. On error,
NULL is returned and errno is set appropriately.

flux_future_get_reactor() returns a flux_reactor_t on success. On error,
NULL is returned and errno is set appropriately.

flux_future_fulfill_with() returns zero on success. On error, -1 is
returned with errno set to EINVAL if either f or p is NULL, or
f and p are the same, EAGAIN if the future p is not ready, or
EEXIST if the function is called multiple times with different p.

ERRORS

	ENOMEM

	Out of memory.

	EINVAL

	Invalid argument.

	ENOENT

	The requested object is not found.

	EAGAIN

	The requested operation is not ready. For flux_future_fulfill_with(),
the target future p is not fulfilled.

	EEXIST

	flux_future_fulfill_with() was called multiple times with a different
target future p.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_clone(3)

flux_future_get(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_continuation_f)(flux_future_t *f, void *arg);

int flux_future_get (flux_future_t *f, const void **result);

int flux_future_then (flux_future_t *f, double timeout,
 flux_continuation_f cb, void *arg);

int flux_future_wait_for (flux_future_t *f, double timeout);

void flux_future_reset (flux_future_t *f);

void flux_future_destroy (flux_future_t *f);

bool flux_future_has_error (flux_future_t *f);

const char *flux_future_error_string (flux_future_t *f);

OVERVIEW

A Flux future represents some activity that may be completed with reactor
watchers and/or message handlers. It is both a handle for synchronization
and a container for the result. A Flux future is said to be "fulfilled"
when a result is available in the future container, or a fatal error has
occurred. Flux futures were inspired by similar constructs in other
programming environments mentioned in RESOURCES, but are not a faithful
implementation of any particular one.

Generally other Flux classes return futures, and may provide class-specific
access function for results. The functions described in this page can be
used to access, synchronize, and destroy futures returned from any such class.
Authors of classes that return futures are referred to flux_future_create(3).

DESCRIPTION

flux_future_get() accesses the result of a fulfilled future. If the
future is not yet fulfilled, it calls flux_future_wait_for() internally
with a negative timeout, causing it to block until the future is fulfilled.
A pointer to the result is assigned to result (caller must NOT free),
or -1 is returned if the future was fulfilled with an error.

flux_future_then() sets up a continuation callback cb that is called
with opaque argument arg once the future is fulfilled. The continuation
will normally use flux_future_get() or a class-specific access function
to obtain the result from the future container without blocking. The
continuation may call flux_future_destroy() or flux_future_reset().
If timeout is non-negative, the future must be fulfilled within the
specified amount of time or the timeout fulfills it with an error (errno
set to ETIMEDOUT).

flux_future_wait_for() blocks until the future is fulfilled, or timeout
(if non-negative) expires. This function may be called multiple times,
with different values for timeout. If the timeout expires before
the future is fulfilled, an error is returned (errno set to ETIMEDOUT)
but the future remains unfulfilled. If timeout is zero, function times
out immediately if the future has not already been fulfilled.

flux_future_reset() unfulfills a future, invalidating any result stored
in the container, and preparing it to be fulfilled once again. If a
continuation was registered, it remains in effect for the next fulfillment.
If a timeout was specified when the continuation was registered, it is
restarted.

flux_future_destroy() destroys a future, including any result contained
within.

flux_future_has_error() tests if an error exists in the future or not.
It can be useful for determining if an error exists in a future or in
other parts of code that may wrap around a future. It is commonly
called before calling flux_future_error_string().

flux_future_error_string() returns the error string stored in a
future. If the future was fulfilled with an optional error string,
flux_future_error_string() will return that string. Otherwise, it
will return the string associated with the error number set in a
future. If the future is a NULL pointer, not fulfilled, or fulfilled
with a non-error, NULL is returned.

RETURN VALUE

flux_future_then(), flux_future_get(), and flux_future_wait_for()
return zero on success. On error, -1 is returned, and errno is set
appropriately.

ERRORS

	ENOMEM

	Out of memory.

	EINVAL

	Invalid argument.

	ETIMEDOUT

	A timeout passed to flux_future_wait_for() expired before the future
was fulfilled.

RESOURCES

Github: http://github.com/flux-framework

C++ std::future: http://en.cppreference.com/w/cpp/thread/future

Java util.concurrent.Future: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

Python3 concurrent.futures: https://docs.python.org/3/library/concurrent.futures.html

SEE ALSO

flux_future_create (3)

flux_future_wait_all_create(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_future_wait_all_create (void);
flux_future_t *flux_future_wait_any_create (void);

int flux_future_push (flux_future_t *cf, const char *name, flux_future_t *f);

const char *flux_future_first_child (flux_future_t *cf);
const char *flux_future_next_child (flux_future_t *cf);
flux_future_t *flux_future_get_child (flux_future_t *cf, const char *name);

DESCRIPTION

See flux_future_get(3) for general functions that operate on futures,
and flux_future_create(3) for a description of the flux_future_t
base type. This page covers functions used for composing futures into
composite types using containers that allow waiting on all or any of a
set of child futures.

flux_future_wait_all_create(3) creates a future that is an empty
container for other futures, which can subsequently be pushed into
the container using flux_future_push(3). The returned future will
be automatically fulfilled when all children futures have been
fulfilled. The caller may then use flux_future_first_child(3),
flux_future_next_child(3), and/or flux_future_get_child(3) and
expect that flux_future_get(3) will not block for any of these child
futures. This function is useful to synchronize on a series of futures
that may be run in parallel.

flux_future_wait_any_create(3) creates a composite future that will be
fulfilled once any one of its children are fulfilled. Once the composite
future is fulfilled, the caller will need to traverse the child futures
to determine which was fulfilled. This function is useful to synchronize
on work where any one of several results is sufficient to continue.

flux_future_push(3) places a new child future f into a future
composite created by either flux_future_wait_all_create(3) or
flux_future_wait_any_create(3). A name is provided for the child so
that the child future can be easily differentiated from other futures
inside the container once the composite future is fulfilled.

Once a flux_future_t is pushed onto a composite future with
flux_future_push(3), the memory for the child future is "adopted" by
the new parent. Thus, calling flux_future_destroy(3) on the parent
composite will destroy all children. Therefore, child futures that
have been the target of flux_future_push(3) should not have
flux_future_destroy(3)` called upon them to avoid double-free.

flux_future_first_child(3) and flux_future_next_child(3) are used to
iterate over child future names in a composite future created with either
flux_future_wait_all_create(3) or flux_future_wait_any_create(3). The
flux_future_t corresponding to the returned name can be then
fetched with flux_future_get_child(3). flux_future_next_child will
return a NULL once all children have been iterated.

flux_future_get_child(3) retrieves a child future from a composite
by name.

RETURN VALUE

flux_future_wait_any_create() and flux_future_wait_all_create() return
a future on success. On error, NULL is returned and errno is set appropriately.

flux_future_push() returns zero on success. On error, -1 is
returned and errno is set appropriately.

flux_future_first_child() returns the name of the first child future in
the targeted composite in no given order. If the composite is empty,
a NULL is returned.

flux_future_next_child() returns the name of the next child future in the
targeted composite in no given order. If the last child has already been
returned then this function returns NULL.

flux_future_get_child() returns a flux_future_t corresponding to the
child future with the supplied string name parameter. If no future with
that name is a child of the composite, then the function returns NULL.

ERRORS

	ENOMEM

	Out of memory.

	EINVAL

	Invalid argument.

	ENOENT

	The requested object is not found.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_future_create(3)

flux_get_rank(3)

SYNOPSIS

#include <flux/core.h>

int flux_get_rank (flux_t *h, uint32_t *rank);

int flux_get_size (flux_t *h, uint32_t *size);

DESCRIPTION

flux_get_rank() and flux_get_size() ask the
Flux broker for its rank in the Flux instance, and the size of the Flux
instance.

Ranks are numbered 0 through size - 1.

RETURN VALUE

These functions return zero on success. On error, -1 is returned, and errno
is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

EXAMPLES

Example:

#include <math.h>
#include <flux/core.h>
#include <inttypes.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 uint32_t rank, n;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");
 if (flux_get_rank (h, &rank) < 0)
 log_err_exit ("flux_get_rank");
 if (flux_get_size (h, &n) < 0)
 log_err_exit ("flux_get_size");
 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

RFC 3: CMB1 - Flux Comms Message Broker Protocol [https://github.com/flux-framework/rfc/blob/master/spec_3.rst]

flux_get_reactor(3)

SYNOPSIS

#include <flux/core.h>

flux_reactor_t *flux_get_reactor (flux_t *h);

int flux_set_reactor (flux_t *h, flux_reactor_t *r);

DESCRIPTION

flux_get_reactor() retrieves a flux_reactor_t object previously
associated with the broker handle h by a call to flux_set_reactor().
If one has not been previously associated, a flux_reactor_t object is created
on demand. If the flux_reactor_t object is created on demand, it will be
destroyed when the handle is destroyed, otherwise it is the responsibility
of the owner to destroy it after the handle is destroyed.

flux_set_reactor() associates a flux_reactor_t object r with a broker
handle h. A flux_reactor_t object may be obtained from another handle,
for example when events from multiple handles are to be managed using
a common flux_reactor_t, or one may be created directly with
flux_reactor_create(3). flux_set_reactor() should be called
immediately after flux_open(3) to avoid conflict with other API calls
which may internally call flux_get_reactor().

RETURN VALUE

flux_get_reactor() returns a flux_reactor_t object on success.
On error, NULL is returned, and errno is set appropriately.

flux_set_reactor() returns 0 on success, or -1 on failure with
errno set appropriately.

ERRORS

	ENOMEM

	Out of memory.

	EEXIST

	Handle already has a reactor association.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_reactor_create(3), flux_reactor_destroy(3)

flux_handle_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_handle_watcher_create (flux_reactor_t *r,
 flux_t *h, int events,
 flux_watcher_f callback,
 void *arg);

flux_t *flux_handle_watcher_get_flux (flux_watcher_t *w);

DESCRIPTION

flux_handle_watcher_create() creates a flux_watcher_t object which
monitors for events on a Flux broker handle h. When events occur,
the user-supplied callback is invoked.

The events and revents arguments are a bitmask containing a
logical OR of the following bits. If a bit is set in events,
it indicates interest in this type of event. If a bit is set in revents,
it indicates that this event has occurred.

	FLUX_POLLIN

	The handle is ready for reading.

	FLUX_POLLOUT

	The handle is ready for writing.

	FLUX_POLLERR

	The handle has encountered an error.
This bit is ignored if it is set in events.

Events are processed in a level-triggered manner. That is, the
callback will continue to be invoked as long as the event has not been
fully consumed or cleared, and the watcher has not been stopped.

flux_handle_watcher_get_flux() is used to obtain the handle from
within the callback.

RETURN VALUE

flux_handle_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

flux_handle_watcher_get_flux() returns the handle associated with
the watcher.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3), flux_recv(3), flux_send(3).

flux_idle_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_prepare_watcher_create (flux_reactor_t *r,
 flux_watcher_f callback,
 void *arg);

flux_watcher_t *flux_check_watcher_create (flux_reactor_t *r,
 flux_watcher_f callback,
 void *arg);

flux_watcher_t *flux_idle_watcher_create (flux_reactor_t *r,
 flux_watcher_f callback,
 void *arg);

DESCRIPTION

flux_prepare_watcher_create(), flux_check_watcher_create(), and
flux_idle_watcher_create() create specialized reactor watchers with
the following properties:

The prepare watcher is called by the reactor loop immediately before
blocking, while the check watcher is called by the reactor loop
immediately after blocking.

The idle watcher is always run when no other events are pending,
excluding other idle watchers, prepare and check watchers.
While it is active, the reactor loop does not block waiting for
new events.

The callback revents argument should be ignored.

Note: the Flux reactor is based on libev. For additional information
on the behavior of these watchers, refer to the libev documentation on
ev_idle, ev_prepare, and ev_check.

RETURN VALUE

These functions return a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_kvs_commit(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_kvs_commit (flux_t *h,
 const char *ns,
 int flags,
 flux_kvs_txn_t *txn);

flux_future_t *flux_kvs_fence (flux_t *h,
 const char *ns,
 int flags,
 const char *name,
 int nprocs,
 flux_kvs_txn_t *txn);

int flux_kvs_commit_get_treeobj (flux_future_t *f,
 const char **treeobj);

int flux_kvs_commit_get_sequence (flux_future_t *f,
 int *seq);

DESCRIPTION

flux_kvs_commit() sends a request via handle h to the KVS service
to commit a transaction txn. txn is created with
flux_kvs_txn_create(3) and after commit completion, is destroyed
with flux_kvs_txn_destroy(). A flux_future_t object is returned,
which acts as handle for synchronization and container for the
response. The txn will operate in the namespace specified by ns.
If ns is NULL, flux_kvs_commit() will operate on the default
namespace, or if set, the namespace from the FLUX_KVS_NAMESPACE
environment variable. Note that all transactions operate on the same
namespace.

flux_kvs_fence() is a "collective" version of flux_kvs_commit() that
supports multiple callers. Each caller uses the same flags, name,
and nprocs arguments. Once nprocs requests are received by the KVS
service for the named operation, the transactions are combined and committed
together as one transaction. name must be unique across the Flux session
and should not be reused, even after the fence is complete.

flux_future_then(3) may be used to register a reactor callback
(continuation) to be called once the response to the commit/fence
request has been received. flux_future_wait_for(3) may be used to
block until the response has been received. Both accept an optional timeout.

flux_future_get(), flux_kvs_commit_get_treeobj(), or
flux_kvs_commit_get_sequence() can decode the response. A return of
0 indicates success and the entire transaction was committed. A
return of -1 indicates failure, none of the transaction was committed.
All can be used on the flux_future_t returned by flux_kvs_commit()
or flux_kvs_fence().

In addition to checking for success or failure,
flux_kvs_commit_get_treeobj() and flux_kvs_commit_get_sequence()
can return information about the root snapshot that the commit or
fence has completed its transaction on.

flux_kvs_commit_get_treeobj() obtains the root hash in the form of
an RFC 11 dirref treeobj, suitable to be passed to
flux_kvs_lookupat(3).

flux_kvs_commit_get_sequence() retrieves the monotonic sequence number
for the root.

FLAGS

The following are valid bits in a flags mask passed as an argument
to flux_kvs_commit() or flux_kvs_fence().

	FLUX_KVS_NO_MERGE

	The KVS service may merge contemporaneous commit transactions as an
optimization. However, if the combined transactions modify the same key,
a watch on that key may only be notified of the last-in value. This flag
can be used to disable that optimization for this transaction.

RETURN VALUE

flux_kvs_commit() and flux_kvs_fence() return a flux_future_t on
success, or NULL on failure with errno set appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

	EPROTO

	A request was malformed.

	ENOSYS

	The KVS module is not loaded.

	ENOTSUP

	An unknown namespace was requested.

	EOVERFLOW

	flux_kvs_fence() has been called too many times and nprocs has
been exceeded.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_kvs_txn_create(3), flux_kvs_set_namespace(3)

flux_kvs_copy(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_kvs_copy (flux_t *h,
 const char *srckey,
 const char *dstkey,
 int commit_flags);

flux_future_t *flux_kvs_move (flux_t *h,
 const char *srckey,
 const char *dstkey,
 int commit_flags);

DESCRIPTION

flux_kvs_copy() sends a request via handle h to the KVS service
to look up the directory entry of srckey. Upon receipt of the response,
it then sends another request to commit a duplicate at dstkey.
commit_flags are passed through to the commit operation.
See the FLAGS section of flux_kvs_commit(3).

The net effect is that all content below srckey is copied to dstkey.
Due to the hash tree organization of the KVS name space, only the
directory entry needs to be duplicated to create a new, fully independent
deep copy of the original data.

flux_kvs_move() first performs a flux_kvs_copy(), then sends a
commit request to unlink srckey. commit_flags are passed through to
the commit within flux_kvs_copy(), and to the commit which performs
the unlink.

flux_kvs_copy() and flux_kvs_move() are capable of working across
namespaces. See flux_kvs_commit(3) for info on how to select a
namespace other than the default.

CAVEATS

flux_kvs_copy() and flux_kvs_commit() are implemented as aggregates
of multiple KVS operations. As such they do not have the "all or nothing"
guarantee of a being carried out within a single KVS transaction.

In the unlikely event that the copy phase of a flux_kvs_move()
succeeds but the unlink phase fails, flux_kvs_move() may return failure
without cleaning up the new copy. Since the copy phase already validated
that the unlink target key exists by copying from it, the source of such a
failure would be a transient error such as out of memory or communication
failure.

RETURN VALUE

flux_kvs_copy () and flux_kvs_move () return a flux_future_t on
success, or NULL on failure with errno set appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

	EPROTO

	A request was malformed.

	ENOSYS

	The KVS module is not loaded.

	ENOTSUP

	An unknown namespace was requested.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_kvs_commit(3)

flux_kvs_getroot(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_kvs_getroot (flux_t *h,
 const char *ns,
 int flags);

int flux_kvs_getroot_get_treeobj (flux_future_t *f,
 const char **treeobj);

int flux_kvs_getroot_get_blobref (flux_future_t *f,
 const char **blobref);

int flux_kvs_getroot_get_sequence (flux_future_t *f,
 int *seq);

int flux_kvs_getroot_get_owner (flux_future_t *f,
 uint32_t *owner);

DESCRIPTION

flux_kvs_getroot() sends a request via handle h to the kvs
service to look up the current root hash for namespace ns. A flux_future_t
object is returned, which acts as handle for synchronization and container
for the response. flags is currently unused and should be set to 0.

Upon future fulfillment, these functions can decode the result:

flux_kvs_getroot_get_treeobj() obtains the root hash in the form
of an RFC 11 dirref treeobj, suitable to be passed to flux_kvs_lookupat(3).

flux_kvs_getroot_get_blobref() obtains the RFC 10 blobref, suitable to
be passed to flux_content_load(3).

flux_kvs_getroot_get_sequence() retrieves the monotonic sequence number
for the root.

flux_kvs_getroot_get_owner() retrieves the namespace owner.

FLAGS

The flags mask is currently unused and should be set to 0.

RETURN VALUE

flux_kvs_getroot() returns a flux_future_t on success, or NULL on
failure with errno set appropriately.

The other functions return zero on success, or -1 on failure with errno
set appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

	EPROTO

	A request was malformed.

	ENOSYS

	The kvs module is not loaded.

	ENOTSUP

	An unknown namespace was requested or namespace was deleted.

	EPERM

	The requesting user is not permitted to access the requested namespace.

	ENODATA

	A stream of responses has been terminated by a call to
flux_kvs_getroot_cancel().

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_kvs_lookup (3), flux_future_get (3), flux_content_load (3).

flux_kvs_lookup(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_kvs_lookup (flux_t *h, const char *ns, int flags,
 const char *key);

flux_future_t *flux_kvs_lookupat (flux_t *h, int flags,
 const char *key, const char *treeobj);

int flux_kvs_lookup_get (flux_future_t *f, const char **value);

int flux_kvs_lookup_get_unpack (flux_future_t *f, const char *fmt, ...);

int flux_kvs_lookup_get_raw (flux_future_t *f,
 const void **data, int *len);

int flux_kvs_lookup_get_dir (flux_future_t *f,
 const flux_kvsdir_t **dir);

int flux_kvs_lookup_get_treeobj (flux_future_t *f, const char **treeobj);

int flux_kvs_lookup_get_symlink (flux_future_t *f, const char **ns,
 const char **target);

const char *flux_kvs_lookup_get_key (flux_future_t *f);

int flux_kvs_lookup_cancel (flux_future_t *f);

DESCRIPTION

The Flux Key Value Store is a general purpose distributed storage
service used by Flux services.

flux_kvs_lookup() sends a request to the KVS service to look up
key in namespace ns. It returns a flux_future_t object which
acts as handle for synchronization and container for the result. The
namespace ns is optional. If set to NULL, flux_kvs_lookup() uses
the default namespace, or if set, the namespace from the
FLUX_KVS_NAMESPACE environment variable. flags modifies the request
as described below.

flux_kvs_lookupat() is identical to flux_kvs_lookup() except
treeobj is a serialized RFC 11 object that references a particular
static set of content within the KVS, effectively a snapshot.
See flux_kvs_lookup_get_treeobj() below.

All the functions below are variations on a common theme. First they
complete the lookup RPC by blocking on the response, if not already received.
Then they interpret the result in different ways. They may be called more
than once on the same future, and they may be intermixed to probe a result
or interpret it in different ways. Results remain valid until
flux_future_destroy() is called.

flux_kvs_lookup_get() interprets the result as a value. If the value
has length greater than zero, a NULL is appended and it is assigned
to value, otherwise NULL is assigned to value.

flux_kvs_lookup_get_unpack() interprets the result as a value, which
it decodes as JSON according to variable arguments in Jansson
json_unpack() format.

flux_kvs_lookup_get_raw() interprets the result as a value. If the value
has length greater than zero, the value and its length are assigned to
buf and len, respectively. Otherwise NULL and zero are assigned.

flux_kvs_lookup_get_dir() interprets the result as a directory,
e.g. in response to a lookup with the FLUX_KVS_READDIR flag set.
The directory object is assigned to dir.

flux_kvs_lookup_get_treeobj() interprets the result as any RFC 11 object.
The object in JSON-encoded form is assigned to treeobj. Since all
lookup requests return an RFC 11 object of one type or another, this
function should work on all.

flux_kvs_lookup_get_symlink() interprets the result as a symlink target,
e.g. in response to a lookup with the FLUX_KVS_READLINK flag set.
The result is parsed and symlink namespace is assigned to ns and
the symlink target is assigned to target. If a namespace was not assigned
to the symlink, ns is set to NULL.

flux_kvs_lookup_get_key() accesses the key argument from the original
lookup.

flux_kvs_lookup_cancel() cancels a stream of lookup responses
requested with FLUX_KVS_WATCH or a waiting lookup response with
FLUX_KVS_WAITCREATE. See FLAGS below for additional information.

These functions may be used asynchronously. See flux_future_then(3) for
details.

FLAGS

The following are valid bits in a flags mask passed as an argument
to flux_kvs_lookup() or flux_kvs_lookupat().

	FLUX_KVS_READDIR

	Look up a directory, not a value. The lookup fails if the key does
not refer to a directory object.

	FLUX_KVS_READLINK

	If key is a symlink, read the link value. The lookup fails if the key
does not refer to a symlink object.

	FLUX_KVS_TREEOBJ

	All KVS lookups return an RFC 11 tree object. This flag requests that
they be returned without conversion. That is, a "valref" will not
be converted to a "val" object, and a "dirref" will not be converted
to a "dir" object. This is useful for obtaining a snapshot reference
that can be passed to flux_kvs_lookupat().

	FLUX_KVS_WATCH

	After the initial response, continue to send responses to the lookup
request each time key is mentioned verbatim in a committed transaction.
After receiving a response, flux_future_reset() should be used to
consume a response and prepare for the next one. Responses continue
until the namespace is removed, the key is removed, the lookup is
canceled with flux_kvs_lookup_cancel(), or an error occurs. After
calling flux_kvs_lookup_cancel(), callers should wait for the future
to be fulfilled with an ENODATA error to ensure the cancel request has
been received and processed.

	FLUX_KVS_WATCH_UNIQ

	Specified along with FLUX_KVS_WATCH, this flag will alter watch
behavior to only respond when key is mentioned verbatim in a
committed transaction and the value of the key has changed.

	FLUX_KVS_WATCH_APPEND

	Specified along with FLUX_KVS_WATCH, this flag will alter watch
behavior to only respond when key is mentioned verbatim in a
committed transaction and the key has been appended to. The response
will only contain the additional appended data. Note that only data
length is considered for appends and no guarantee is made that prior
data hasn't been overwritten.

	FLUX_KVS_WATCH_FULL

	Specified along with FLUX_KVS_WATCH, this flag will alter watch
behavior to respond when the value of the key being watched has
changed. Unlike FLUX_KVS_WATCH_UNIQ, the key being watched need not
be mentioned in a transaction. This may occur under several
scenarios, such as a parent directory being altered.

	FLUX_KVS_WAITCREATE

	If a KVS key does not exist, wait for it to exist before returning.
This flag can be specified with or without FLUX_KVS_WATCH. The lookup
can be canceled with flux_kvs_lookup_cancel(). After calling
flux_kvs_lookup_cancel(), callers should wait for the future to be
fulfilled with an ENODATA error to ensure the cancel request has been
received and processed.

RETURN VALUE

flux_kvs_lookup() and flux_kvs_lookupat() return a
flux_future_t on success, or NULL on failure with errno set appropriately.

flux_kvs_lookup_get(), flux_kvs_lookup_get_unpack(),
flux_kvs_lookup_get_raw(), flux_kvs_lookup_get_dir(),
flux_kvs_lookup_get_treeobj(), flux_kvs_lookup_get_symlink(),
and flux_kvs_lookup_cancel() return 0 on success, or -1 on failure with
errno set appropriately.

flux_kvs_lookup_get_key() returns key on success, or NULL with errno
set to EINVAL if its future argument did not come from a KVS lookup.

ERRORS

	EINVAL

	One of the arguments was invalid, or FLUX_KVS_READLINK was used but
the key does not refer to a symlink.

	ENOMEM

	Out of memory.

	ENOENT

	An unknown key was requested.

	ENOTDIR

	FLUX_KVS_READDIR flag was set and key does NOT point to a directory.

	EISDIR

	FLUX_KVS_READDIR flag was NOT set and key points to a directory.

	EPROTO

	A request or response was malformed.

	EFBIG; ENOSYS

	The KVS module is not loaded.

	ENOTSUP

	An unknown namespace was requested or namespace was deleted.

	ENODATA

	A stream of responses requested with FLUX_KVS_WATCH was terminated
with flux_kvs_lookup_cancel().

	EPERM

	The user does not have instance owner capability, and a lookup was attempted
against a KVS namespace owned by another user.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_rpc(3), flux_future_then(3), flux_kvs_set_namespace(3)

RFC 11: Key Value Store Tree Object Format v1 [https://github.com/flux-framework/rfc/blob/master/spec_11.rst]

flux_kvs_namespace_create(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_kvs_namespace_create (flux_t *h,
 const char *namespace,
 uint32_t owner,
 int flags);

flux_future_t *flux_kvs_namespace_remove (flux_t *h,
 const char *namespace);

DESCRIPTION

flux_kvs_namespace_create() creates a KVS namespace. Within a
namespace, users can get/put KVS values completely independent of
other KVS namespaces. An owner of the namespace other than the
instance owner can be chosen by setting owner. Otherwise, owner
can be set to FLUX_USERID_UNKNOWN.

flux_kvs_namespace_remove() removes a KVS namespace.

FLAGS

The flags mask is currently unused and should be set to 0.

RETURN VALUE

flux_kvs_namespace_create() and flux_kvs_namespace_remove() return
a flux_future_t on success, or NULL on failure with errno set
appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

	EPROTO

	A request was malformed.

	ENOSYS

	The KVS module is not loaded.

	EEXIST

	The namespace already exists.

	ENOTSUP

	Attempt to remove illegal namespace.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_kvs_lookup(3), flux_kvs_commit(3)

flux_kvs_txn_create(3)

SYNOPSIS

#include <flux/core.h>

flux_kvs_txn_t *flux_kvs_txn_create (void);

void flux_kvs_txn_destroy (flux_kvs_txn_t *txn);

int flux_kvs_txn_put (flux_kvs_txn_t *txn, int flags,
 const char *key, const char *value);

int flux_kvs_txn_pack (flux_kvs_txn_t *txn, int flags,
 const char *key, const char *fmt, ...);

int flux_kvs_txn_vpack (flux_kvs_txn_t *txn, int flags,
 const char *key, const char *fmt, va_list ap);

int flux_kvs_txn_mkdir (flux_kvs_txn_t *txn, int flags,
 const char *key);

int flux_kvs_txn_unlink (flux_kvs_txn_t *txn, int flags,
 const char *key);

int flux_kvs_txn_symlink (flux_kvs_txn_t *txn, int flags,
 const char *key, const char *ns,
 const char *target);

int flux_kvs_txn_put_raw (flux_kvs_txn_t *txn, int flags,
 const char *key, const void *data, int len);

int flux_kvs_txn_put_treeobj (flux_kvs_txn_t *txn, int flags,
 const char *key, const char *treeobj);

DESCRIPTION

The Flux Key Value Store is a general purpose distributed storage
service used by Flux services.

flux_kvs_txn_create() creates a KVS transaction object that may be
passed to flux_kvs_commit(3) or flux_kvs_fence(3). The transaction
consists of a list of operations that are applied to the KVS together,
in order. The entire transaction either succeeds or fails. After commit
or fence, the object must be destroyed with flux_kvs_txn_destroy().

Each function below adds a single operation to txn. key is a
hierarchical path name with period (".") used as path separator.
When the transaction is committed, any existing keys or path components
that are in conflict with the requested operation are overwritten.
flags can modify the request as described below.

flux_kvs_txn_put() sets key to a NULL terminated string value.
value may be NULL indicating that an empty value should be stored.

flux_kvs_txn_pack() sets key to a NULL terminated string encoded
from a JSON object built with json_pack() style arguments (see below).
flux_kvs_txn_vpack() is a variant that accepts a va_list argument.

flux_kvs_txn_mkdir() sets key to an empty directory.

flux_kvs_txn_unlink() removes key. If key is a directory,
all its contents are removed as well.

flux_kvs_txn_symlink() sets key to a symbolic link pointing to a
namespace ns and a target key within that namespace. Neither ns
nor target must exist. The namespace ns is optional, if set to
NULL the target is assumed to be in the key's current namespace.

flux_kvs_txn_put_raw() sets key to a value containing raw data
referred to by data of length len.

flux_kvs_txn_put_treeobj() sets key to an RFC 11 object, encoded
as a JSON string.

FLAGS

The following are valid bits in a flags mask passed as an argument
to flux_kvs_txn_put() or flux_kvs_txn_put_raw().

	FLUX_KVS_APPEND

	Append value instead of overwriting it. If the key does not exist,
it will be created with the value as the initial value.

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

RETURN VALUE

flux_kvs_txn_create() returns a flux_kvs_txn_t object on success,
or NULL on failure with errno set appropriately.

flux_kvs_txn_put(), flux_kvs_txn_pack(), flux_kvs_txn_mkdir(),
flux_kvs_txn_unlink(), flux_kvs_txn_symlink(), and flux_kvs_txn_put_raw()
returns 0 on success, or -1 on failure with errno set appropriately.

ERRORS

	EINVAL

	One of the arguments was invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_kvs_commit(3)

RFC 11: Key Value Store Tree Object Format v1 [https://github.com/flux-framework/rfc/blob/master/spec_11.rst]

flux_log(3)

SYNOPSIS

#include <flux/core.h>

int flux_vlog (flux_t *h, int level, const char *fmt, va_list ap);

int flux_log (flux_t *h, int level, const char *fmt, …​);

void flux_log_set_appname (flux_t *h, const char *s);

void flux_log_set_procid (flux_t *h, const char *s);

DESCRIPTION

flux_log() creates RFC 5424 format log messages. The log messages
are sent to the Flux message broker on h for handling if it is
specified. If h is NULL, the log message is output to stderr.

The level parameter should be set to one of the syslog(3) severity
levels, which are, in order of decreasing importance:

	LOG_EMERG

	system is unusable

	LOG_ALERT

	action must be taken immediately

	LOG_CRIT

	critical conditions

	LOG_ERR

	error conditions

	LOG_WARNING

	warning conditions

	LOG_NOTICE

	normal, but significant, condition

	LOG_INFO

	informational message

	LOG_DEBUG

	debug-level message

When h is specified, log messages are are added to the broker's
circular buffer which can be accessed with flux-dmesg(3). From there,
a message's disposition is up to the broker's log configuration.

flux_log_set_procid() may be used to override the default procid,
which is initialized to the calling process's PID.

flux_log_set_appname() may be used to override the default
application name, which is initialized to the value of the __progname
symbol (normally the argv[0] program name).

MAPPING TO SYSLOG

A Flux log message is formatted as a Flux request with a "raw" payload,
as defined by Flux RFC 3. The raw payload is formatted according to
Internet RFC 5424.

If the Flux handle h is specified, the following Syslog header
fields are set in a Flux log messages when it is created within
flux_log():

	PRI

	Set to the user-specified severity level combined with the facility,
which is hardwired to LOG_USER in Flux log messages.

	VERSION

	Set to 1.

	TIMESTAMP

	Set to the current UTC wallclock time.

	HOSTNAME

	Set to the broker rank associated with h.

	APP-NAME

	Set to the user-defined application name, truncated to 48 characters,
excluding terminating NULL.

	PROCID

	Set to the PID of the calling process.

	MSGID

	Set to the NIL string "-".

The STRUCTURED-DATA portion of the message is empty, and reserved for
future use by Flux.

The MSG portion is post-processed to ensure it contains no NULL's or non-ASCII
characters. At this time non-ASCII UTF-8 is not supported by flux_log().

RETURN VALUE

flux_log() normally returns 0 on success, or -1 if there was
a problem building or sending the log message, with errno set.

ERRORS

	EPERM

	The user does not have permission to log messages to this Flux instance.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-dmesg(1), flux-logger(1),
RFC 5424 The Syslog Protocol [https://tools.ietf.org/html/rfc5424]

flux_msg_cmp(3)

SYNOPSIS

#include <flux/core.h>

struct flux_match {
 int typemask;
 uint32_t matchtag;
 char *topic_glob;
};

bool flux_msg_cmp (const flux_msg_t *msg, struct flux_match match);

DESCRIPTION

flux_msg_cmp() compares msg to match criteria.

If match.typemask is nonzero, the type of the message must match
one of the types in the mask.

If match.matchtag is not FLUX_MATCHTAG_NONE, the message matchtag
must match match.matchtag.

If match.topic_glob is not NULL or an empty string, then the message topic
string must match match.topic_glob according to the rules of shell wildcards.

RETURN VALUE

flux_msg_cmp() returns true on a match, otherwise false.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

fnmatch(3)

flux_msg_encode(3)

SYNOPSIS

#include <flux/core.h>

int flux_msg_encode (const flux_msg_t *msg, void **buf, size_t *size);

flux_msg_t *flux_msg_decode (void *buf, size_t size);

DESCRIPTION

flux_msg_encode() converts msg to a serialized representation,
allocated internally and assigned to buf, number of bytes to size.
The caller must release buf with free(3).

flux_msg_decode() performs the inverse, creating msg from buf and size.
The caller must destroy msg with flux_msg_destroy().

RETURN VALUE

flux_msg_encode() returns 0 on success. On error, -1 is returned,
and errno is set appropriately.

flux_msg_decode() the decoded message on success. On error, NULL
is returned, and errno is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

flux_msg_handler_addvec(3)

SYNOPSIS

#include <flux/core.h>

struct flux_msg_handler_spec {
 int typemask;
 const char *topic_glob;
 flux_msg_handler_f cb;
 uint32_t rolemask;
};

int flux_msg_handler_addvec (flux_t *h,
 const struct flux_msg_handler_spec tab[],
 void *arg,
 flux_msg_handler_t **handlers[]);

void flux_msg_handler_delvec (flux_msg_handler_t *handlers[]);

DESCRIPTION

flux_msg_handler_addvec() creates and starts an array of message handlers,
terminated by FLUX_MSGHANDLER_TABLE_END. The new message handler objects
are assigned to an internally allocated array, returned in handlers.
The last entry in the array is set to NULL.

flux_msg_handler_delvec() stops and destroys an array of message handlers
returned from flux_msg_handler_addvec().

These functions are convenience functions which call
flux_msg_handler_create(3), flux_msg_handler_start(3); and
flux_msg_handler_stop(3), flux_msg_handler_destroy(3) on each element
of the array, respectively.

If flux_msg_handler_addvec() encounters an error creating a message
handler, all previously created message handlers in the array are destroyed
before an error is returned.

RETURN VALUE

flux_msg_handler_addvec() returns zero on success.
On error, -1 is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_msg_handler_create(3)

flux_msg_handler_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_msg_handler_f)(flux_t *h,
 flux_msg_handler_t *mh,
 const flux_msg_t *msg,
 void *arg);

flux_msg_handler_t *
flux_msg_handler_create (flux_t *h,
 const struct flux_match match,
 flux_msg_handler_f callback,
 void *arg);

void flux_msg_handler_destroy (flux_msg_handler_t *mh);

void flux_msg_handler_start (flux_msg_handler_t *mh);

void flux_msg_handler_stop (flux_msg_handler_t *mh);

DESCRIPTION

flux_msg_handler_create() registers callback to be invoked when
a message meeting match criteria, as described in flux_msg_cmp(3),
is received on Flux broker handle h.

The message handler must be started with flux_msg_handler_start() in
order to receive messages. Conversely, flux_msg_handler_stop() causes
the message handler to stop receiving messages. Starting and stopping
are idempotent operations.

The handle h is monitored for FLUX_POLLIN events on the flux_reactor_t
associated with the handle as described in flux_set_reactor(3).
This internal "handle watcher" is started when the first message handler
is started, and stopped when the last message handler is stopped.

Messages arriving on h are internally read and dispatched to matching
message handlers. If multiple handlers match the message, the following
rules apply:

	FLUX_MSGTYPE_REQUEST

	Requests are first delivered to a message handler whose match.topic_glob
is set to an exact string match of the message topic glob. The most recently
registered of these takes precedence. If an exact match is unavailable,
the message is delivered to the most recently registered message handler
for which flux_msg_cmp() returns true. If there is no match, an ENOSYS
response is automatically generated by the dispatcher.

	FLUX_MSGTYPE_RESPONSE

	Responses are first delivered to a matching RPC response handler
(match.matchtag != FLUX_MATCHTAG_NONE). If an RPC response handler
does not match, responses are delivered to the most recently registered
message handler for which flux_msg_cmp() returns true. If there is no
match, the response is discarded.

	FLUX_MSGTYPE_EVENT

	Events are delivered to all matching message handlers.

flux_msg_handler_destroy() destroys a handler, after internally
stopping it.

CAVEATS

Although it is possible to register a message handler in a given flux_t
handle for any topic string, flux-broker(1) does not automatically route
matching requests or events to the handle.

Requests are only routed if the handle has registered a matching service
with flux_service_register(3), or for broker modules only, the service
matches the module name.

Events are only routed if the topic matches a subscription registered
with flux_event_subscribe(3).

RETURN VALUE

flux_msg_handler_create() returns a flux_msg_handler_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_get_reactor(3), flux_reactor_start(3), flux_msg_cmp(3)

flux_open(3)

SYNOPSIS

#include <flux/core.h>

flux_t *flux_open (const char *uri, int flags);

void flux_close (flux_t *h);

flux_t *flux_clone (flux_t *orig);

DESCRIPTION

flux_open() creates a flux_t handle, used to communicate with the
Flux message broker.

The uri scheme (before "://") specifies the "connector"
that will be used to establish the connection. The uri path
(after "://") is parsed by the connector. If uri is NULL,
the value of $FLUX_URI is used, if set.

flags is the logical "or" of zero or more of the following flags:

	FLUX_O_TRACE

	Dumps message trace to stderr.

	FLUX_O_MATCHDEBUG

	Prints diagnostic to stderr when matchtags are leaked, for example when
a streaming RPC is destroyed without receiving a error response as
end-of-stream, or a regular RPC is destroyed without being fulfilled at all.

	FLUX_O_NONBLOCK

	The flux_send() and flux_recv() functions should never block.

flux_clone() creates another reference to a flux_t handle that is
identical to the original in all respects except that it does not inherit
a copy of the original handle's "aux" hash, or its reactor and message
dispatcher references. By creating a clone, and calling flux_set_reactor()
on it, one can create message handlers on the cloned handle that run on a
different reactor than the one associated with the original handle.

flux_close() destroys a flux_t handle, closing its connection with
the Flux message broker.

RETURN VALUE

flux_open() and flux_clone() return a flux_t handle on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	EINVAL

	uri was NULL and $FLUX_URI was not set, or other arguments were invalid.

	ENOMEM

	Out of memory.

EXAMPLES

This example opens the Flux broker using the default connector
and path, requests the broker rank, and finally closes the broker handle.

#include <inttypes.h>
#include <flux/core.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 uint32_t rank;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");
 if (flux_get_rank (h, &rank) < 0)
 log_err_exit ("flux_get_rank");
 printf ("My rank is %"PRIu32"\n", rank);
 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

flux_periodic_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

typedef double (*flux_reschedule_f) (flux_watcher_t *w, double now, void *arg);

flux_watcher_t *flux_periodic_watcher_create (flux_reactor_t *r,
 double offset, double interval,
 flux_reschedule_f reschedule_cb,
 flux_watcher_f callback,
 void *arg);

void flux_periodic_watcher_reset (flux_watcher_t *w,
 double offset, double interval);

DESCRIPTION

flux_periodic_watcher_create() creates a flux_watcher_t object which
monitors for periodic events. The periodic watcher will trigger when the
wall clock time offset has elapsed, and optionally again ever interval
of wall clock time thereafter. If the reschedule_cb parameter is used,
then offset and interval are ignored, and instead each time the
periodic watcher is scheduled the reschedule callback will be called
with the current time, and is expected to return the next absolute time
at which the watcher should be scheduled.

Unlike timer events, a periodic watcher monitors wall clock or system time,
not the actual time that passes. Thus, a periodic watcher can be used
to run a callback when system time reaches a certain point. For example,
if a periodic watcher is set to run with an offset of 10 seconds, and
then system time is set back by 1 hour, it will take approximately 1 hour,
10 seconds for the watcher to execute.

If a periodic watcher is running in manual reschedule mode (reschedule_cb
is non-NULL), and the user-provided reschedule callback returns a time
that is before the current time, the watcher will be silently stopped.

Note: the Flux reactor is based on libev. For additional important
information on the behavior of periodic, refer to the libev documentation
on ev_periodic.

RETURN VALUE

flux_periodic_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3), flux_timer_watcher_create(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_pollevents(3)

SYNOPSIS

#include <flux/core.h>

int flux_pollevents (flux_t *h);

int flux_pollfd (flux_t *h);

DESCRIPTION

flux_pollevents() returns a bitmask of poll flags for handle h.

flux_pollfd() obtains a file descriptor that becomes readable, in
an edge triggered fashion, when flux_pollevents() has poll flags
raised.

Valid poll flags are:

	FLUX_POLLIN

	Handle is ready for reading.

	FLUX_POLLOUT

	Handle is ready for writing.

	FLUX_POLLERR

	Handle has experienced an error.

These functions can be used to integrate a flux_t handle into an
external event loop. They are analogous to the ZMQ_FD and ZMQ_EVENTS
socket options provided by ZeroMQ.

RETURN VALUE

flux_pollevents() returns flags on success. On error, -1 is returned,
and errno is set appropriately.

flux_pollfd() returns a file descriptor on success. On error, -1 is
returned, and errno is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

EXAMPLES

Here is an example of a libev "composite watcher" for a Flux handle
using the hooks provided above. This code, more or less, is used internally
to integrate flux handles into the Flux reactor, which is based on libev.
Refer to the libev documentation for background on how libev works.

There are a total of four different types of libev watcher in the
composite watcher. libev "prepare" and "check" callbacks are executed just
before and just after libev blocks internally in the poll(2) system call.
Here they are used to test flux_pollevents(), make user callbacks,
and enable/disable no-op "io" and "idle" watchers. The io watcher
watches for EV_READ on flux_pollfd() file descriptor. The idle watcher,
if enabled, is always ready and thus causes the event loop to spin.

When flux_pollevents() has poll flags asserted, the idle watcher is enabled.
When flux_pollevents() has no poll flags asserted, the idle watcher is
disabled and the io watcher is enabled. While the idle and io watchers
have no callbacks, if either is enabled and ready, the event loop must
execute the prepare and check callbacks.

The net results are 1) the edge-triggered notification provided by
flux_pollfd() is integrated with libev's level-triggered watcher
processing; 2) the handle is able to give control back to the event
loop between handle event callbacks to preserve fairness, i.e.
it doesn't have to consume events until they they are gone in one
callback; and 3) the event loop is able to sleep when there are no
handle events pending.

// ev_flux.h
#include <ev.h>

struct ev_flux;

typedef void (*ev_flux_f)(struct ev_loop *loop,
 struct ev_flux *w, int revents);

struct ev_flux {
 ev_io io_w;
 ev_prepare prepare_w;
 ev_idle idle_w;
 ev_check check_w;
 flux_t *h;
 int pollfd;
 int events;
 ev_flux_f cb;
 void *data;
};

// ev_flux.c
static int get_pollevents (flux_t *h)
{
 int e = flux_pollevents (h);
 int events = 0;
 if (e < 0 || (e & FLUX_POLLERR))
 events |= EV_ERROR;
 if ((e & FLUX_POLLIN))
 events |= EV_READ;
 if ((e & FLUX_POLLOUT))
 events |= EV_WRITE;
 return events;
}

static void prepare_cb (struct ev_loop *loop, ev_prepare *w,
 int revents)
{
 struct ev_flux *fw = (struct ev_flux *)((char *)w
 - offsetof (struct ev_flux, prepare_w));
 int events = get_pollevents (fw->h);

 if ((events & fw->events) || (events & EV_ERROR))
 ev_idle_start (loop, &fw->idle_w);
 else
 ev_io_start (loop, &fw->io_w);
}

static void check_cb (struct ev_loop *loop, ev_check *w,
 int revents)
{
 struct ev_flux *fw = (struct ev_flux *)((char *)w
 - offsetof (struct ev_flux, check_w));
 int events = get_pollevents (fw->h);

 ev_io_stop (loop, &fw->io_w);
 ev_idle_stop (loop, &fw->idle_w);

 if ((events & fw->events) || (events & EV_ERROR))
 fw->cb (loop, fw, events);
}

int ev_flux_init (struct ev_flux *w, ev_flux_f cb,
 flux_t *h, int events)
{
 w->cb = cb;
 w->h = h;
 w->events = events;
 if ((w->pollfd = flux_pollfd (h)) < 0)
 return -1;

 ev_prepare_init (&w->prepare_w, prepare_cb);
 ev_check_init (&w->check_w, check_cb);
 ev_idle_init (&w->idle_w, NULL);
 ev_io_init (&w->io_w, NULL, w->pollfd, EV_READ);

 return 0;
}

void ev_flux_start (struct ev_loop *loop, struct ev_flux *w)
{
 ev_prepare_start (loop, &w->prepare_w);
 ev_check_start (loop, &w->check_w);
}

void ev_flux_stop (struct ev_loop *loop, struct ev_flux *w)
{
 ev_prepare_stop (loop, &w->prepare_w);
 ev_check_stop (loop, &w->check_w);
 ev_io_stop (loop, &w->io_w);
 ev_idle_stop (loop, &w->idle_w);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

http://api.zeromq.org/4-0:zmq-getsockopt

http://funcptr.net/2013/04/20/embedding-zeromq-in-the-libev-event-loop

flux_reactor_create(3)

SYNOPSIS

#include <flux/core.h>

flux_reactor_t *flux_reactor_create (int flags);

void flux_reactor_destroy (flux_reactor_t *r);

int flux_reactor_run (flux_reactor_t *r, int flags);

void flux_reactor_stop (flux_reactor_t *r);

void flux_reactor_stop_error (flux_reactor_t *r);

void flux_reactor_active_incref (flux_reactor_t *r);

void flux_reactor_active_decref (flux_reactor_t *r);

DESCRIPTION

flux_reactor_create() creates a flux_reactor_t object which can be used
to monitor for events on file descriptors, ZeroMQ sockets, timers, and
flux_t broker handles.

There is currently only one possible flag for reactor creation:

	FLUX_REACTOR_SIGCHLD

	The reactor will internally register a SIGCHLD handler and be capable
of handling flux child watchers (see flux_child_watcher_create(3)).

For each event source and type that is to be monitored, a flux_watcher_t
object is created using a type-specific create function, and started
with flux_watcher_start(3).

For each event source and type that is to be monitored, a flux_watcher_t
object is created and associated with a specific reactor using a type-specific
create function, and started with flux_watcher_start(3). To receive events,
control must be transferred to the reactor event loop by calling
flux_reactor_run().

The full list of flux reactor run flags is as follows:

	FLUX_REACTOR_NOWAIT

	Run one reactor loop iteration without blocking.

	FLUX_REACTOR_ONCE

	Run one reactor loop iteration, blocking until at least one event is handled.

flux_reactor_run() processes events until one of the following conditions
is met:

	There are no more active watchers.

	The flux_reactor_stop() or flux_reactor_stop_error() functions
are called by one of the watchers.

	Flags include FLUX_REACTOR_NOWAIT and one reactor loop iteration
has been completed.

	Flags include FLUX_REACTOR_ONCE, at least one event has been handled,
and one reactor loop iteration has been completed.

If flux_reactor_stop_error() is called, this will cause
flux_reactor_run() to return -1 indicating that an error has occurred.
The caller should ensure that a valid error code has been assigned to
errno(3) before calling this function.

flux_reactor_destroy() releases an internal reference taken at
flux_reactor_create() time. Freeing of the underlying resources will
be deferred if there are any remaining watchers associated with the reactor.

flux_reactor_active_decref() and flux_reactor_active_incref() manipulate
the reactor's internal count of active watchers. Each active watcher takes
a reference count on the reactor, and the reactor returns when this count
reaches zero. It is useful sometimes to have a watcher that can remain
active without preventing the reactor from exiting. To achieve this,
call flux_reactor_active_decref() after the watcher is started, and
flux_reactor_active_incref() before the watcher is stopped.
Remember that destroying an active reactor internally stops it,
so be sure to stop/incref such a watcher first.

RETURN VALUE

flux_reactor_create() returns a flux_reactor_t object on success.
On error, NULL is returned, and errno is set appropriately.

flux_reactor_run() returns the number of active watchers on success.
On failure, it returns -1 with errno set. A failure return is triggered
when the application sets errno and calls flux_reactor_stop_error().

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_fd_watcher_create(3), flux_handle_watcher_create(3),
flux_timer_watcher_create(3), flux_watcher_start(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_watcher_now(3)

SYNOPSIS

double flux_reactor_now (flux_reactor_t *r);

void flux_reactor_now_update (flux_reactor_t *r);

double flux_reactor_time (void);

DESCRIPTION

flux_reactor_now() returns the current reactor time, which is the time
the reactor began processing events. The time will not be updated until
the reactor runs out of events and wakes up again. This is a lighter
weight alternative to system calls when only coarse event timing is needed,
e.g. when all events processed in a given wakeup can be considered
simultaneous.

flux_reactor_now_update() forces an update to reactor time.
This may be useful when the reactor has not run for a while and timing
calculations relative to reactor time need to be made, for example when
creating timer watchers.

flux_reactor_time() returns the system time as a double.
Reactor time is a snapshot of flux_reactor_time().

Note: the Flux reactor is based on libev. For additional information
on the behavior of reactor time, refer to the libev documentation on
ev_now and ev_now_update().

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_reactor_create (3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_recv(3)

SYNOPSIS

#include <flux/core.h>

flux_msg_t *flux_recv (flux_t *h, struct flux_match match, int flags);

DESCRIPTION

flux_recv() receives a message using the Flux Message broker,
previously opened with flux_open() on handle h.
The message should eventually be destroyed with flux_msg_destroy().

match is a message match structure which limits which messages
can be received.

struct flux_match {
 int typemask; // bitmask of matching message types
 uint32_t matchtag; // matchtag
 char *topic_glob; // glob matching topic string
};

The following initializers are available for match:

	FLUX_MATCH_ANY

	Match any message.

	FLUX_MATCH_EVENT

	Match any event message.

For additional details on how to use match, see flux_msg_cmp(3).

flags is the logical "or" of zero or more of the following flags:

	FLUX_O_TRACE

	Dumps msg to stderr.

	FLUX_O_NONBLOCK

	If unable to receive a matching message, return an error rather than block.

Internally, flags are the logical "or" of flags and the flags provided
to flux_open() when the handle was created.

Messages that do not meet match criteria, are requeued with
flux_requeue() for later consumption.

RETURN VALUE

flux_recv() returns a message on success. On error, NULL is returned,
and errno is set appropriately.

ERRORS

	ENOSYS

	Handle has no recv operation.

	EINVAL

	Some arguments were invalid.

	EAGAIN

	FLUX_O_NONBLOCK was selected and flux_send() would block.

EXAMPLES

This example opens the Flux broker and displays event messages
as they arrive.

#include <flux/core.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 flux_msg_t *msg;
 const char *topic;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");
 if (flux_event_subscribe (h, "") < 0)
 log_err_exit ("flux_event_subscribe");
 for (;;) {
 if ((msg = flux_recv (h, FLUX_MATCH_EVENT, 0)))
 log_err_exit ("flux_recv");
 if (flux_msg_get_topic (msg, &topic) < 0)
 log_err_exit ("flux_msg_get_topic");
 printf ("Event: %s\n", topic);
 flux_msg_destroy (msg);
 }
 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3), flux_send(3), flux_requeue(3), flux_msg_cmp(3)

flux_request_decode(3)

SYNOPSIS

#include <flux/core.h>

int flux_request_decode (const flux_msg_t *msg,
 const char **topic,
 const char **s);

int flux_request_unpack (const flux_msg_t *msg,
 const char **topic,
 const char *fmt, ...);

int flux_request_decode_raw (const flux_msg_t *msg,
 const char **topic,
 const void **data, int *len);

DESCRIPTION

flux_request_decode() decodes a request message msg.

topic, if non-NULL, will be set the message's topic string. The storage
for this string belongs to msg and should not be freed.

s, if non-NULL, will be set to the message's NULL-terminated string payload.
If no payload exists, it is set to NULL. The storage for this string belongs
to msg and should not be freed.

flux_request_unpack() decodes a request message with a JSON payload as
above, parsing the payload using variable arguments with a format string
in the style of jansson's json_unpack() (used internally). Decoding fails
if the message doesn't have a JSON payload.

flux_request_decode_raw() decodes a request message with a raw payload,
setting data and len to the payload data and length. The storage for
the raw payload belongs to msg and should not be freed.

DECODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_unpack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a JSON string to a pointer to a null terminated UTF-8 string.
The resulting string is extracted by using 'json_string_value()'
internally, so it exists as long as there are still references to the
corresponding JSON string.

	n (null)

	Expect a JSON null value. Nothing is extracted.

	b (boolean)['int']

	Convert a JSON boolean value to a C int, so that true is converted to 1
and false to 0.

	i (integer)['int']

	Convert a JSON integer to a C int.

	I (integer)['int64_t']

	Convert a JSON integer to a C int64_t.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert JSON real to a C double.

	F (real)['double']

	Convert JSON number (integer or real) to a C double.

	o (any value)['json_t *']

	Store a JSON value, with no conversion, to a json_t pointer.

	O (any value)['json_t *']

	Like o, but the JSON value's reference count is incremented.

	[fmt] (array)

	Convert each item in the JSON array according to the inner format
string. fmt may contain objects and arrays, i.e. recursive value
extraction is supported.

	{fmt} (object)

	Convert each item in the JSON object according to the inner format
string fmt. The first, third, etc. format specifier represent a
key, and must by s. The corresponding argument to unpack functions
is read as the object key. The second, fourth, etc. format specifier
represent a value and is written to the address given as the corresponding
argument. Note that every other argument is read from and every other
is written to. fmt may contain objects and arrays as values, i.e.
recursive value extraction is supported. Any s representing a key
may be suffixed with ? to make the key optional. If the key is not
found, nothing is extracted.

	!

	This special format specifier is used to enable the check that all
object and array items are accessed, on a per-value basis. It must
appear inside an array or object as the last format specifier before
the closing bracket or brace.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Parsing and Validating Values [http://jansson.readthedocs.io/en/2.6/apiref.html#parsing-and-validating-values]

RETURN VALUE

These functions return 0 on success. On error, -1 is returned, and
errno is set appropriately.

ERRORS

	EINVAL

	The msg argument was NULL.

	EPROTO

	Message decoding failed, such as due to incorrect message type,
missing topic string, etc..

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_respond(3), flux_rpc(3)

flux_request_encode(3)

SYNOPSIS

#include <flux/core.h>

flux_msg_t *flux_request_encode (const char *topic,
 const char *s);

flux_msg_t *flux_request_encode_raw (const char *topic,
 void *data, int len);

DESCRIPTION

flux_request_encode() encodes a request message with topic string
topic and optional NULL terminated string payload s. The newly constructed
message that is returned must be destroyed with flux_msg_destroy().

flux_request_encode_raw() encodes a request message with topic
string topic. If data is non-NULL its contents will be used
as the message payload, and the payload type set to raw.

RETURN VALUE

These functions return a message on success. On error, NULL is
returned, and errno is set appropriately.

ERRORS

	EINVAL

	The topic argument was NULL or s is not NULL terminated.

	ENOMEM

	Memory was unavailable.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_response_decode(3), flux_rpc(3)

flux_requeue(3)

SYNOPSIS

#include <flux/core.h>

int flux_requeue (flux_t *h, const flux_msg_t *msg, int flags);

DESCRIPTION

flux_requeue() requeues a msg in handle h. The message
can be received with flux_recv() as though it arrived from the broker.

flags must be set to one of the following values:

	FLUX_RQ_TAIL

	msg is placed at the tail of the message queue.

	FLUX_RQ_TAIL

	msg is placed at the head of the message queue.

RETURN VALUE

flux_requeue() return zero on success.
On error, -1 is returned, and errno is set appropriately.

ERRORS

	EINVAL

	Some arguments were invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3), flux_recv(3), flux_send(3)

flux_respond(3)

SYNOPSIS

#include <flux/core.h>

int flux_respond (flux_t *h, const flux_msg_t *request,
 const char *s);

int flux_respond_pack (flux_t *h, const flux_msg_t *request,
 const char *fmt, ...);

int flux_respond_raw (flux_t *h, const flux_msg_t *request,
 const void *data, int length);

int flux_respond_error (flux_t *h, const flux_msg_t *request,
 int errnum, const char *errmsg);

DESCRIPTION

flux_respond(), flux_respond_pack(), flux_respond_raw(), and
flux_respond_error() encode and send a response message on handle h,
deriving topic string, matchtag, and route stack from the provided
request.

flux_respond() sends a response to request. If s is non-NULL,
flux_respond() will send it as the response payload, otherwise there
will be no payload.

flux_respond_raw() is identical except if data is non-NULL,
flux_respond_raw() will send it as the response payload.

flux_respond_pack() encodes a response message with a JSON payload,
building the payload using variable arguments with a format string in
the style of jansson's json_pack() (used internally).

flux_respond_error() returns an error response to the sender.
errnum must be non-zero. If errmsg is non-NULL, an error string
payload is included in the response. The error string may be used to
provide a more detailed error message than can be conveyed via errnum.

STREAMING SERVICES

Per RFC 6, a "streaming" service must return zero or more non-error
responses to a request and a final error response. If the requested
operation was successful, the final error response may use ENODATA as
the error number. Clients should interpret ENODATA as a non-error
end-of-stream marker.

It is essential that services which return multiple responses verify that
requests were made with the FLUX_RPC_STREAMING flag by testing the
FLUX_MSGFLAG_STREAMING flag, e.g. using flux_msg_is_streaming().
If the flag is not set, the service must return an immediate EPROTO error.

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

RETURN VALUE

These functions return zero on success. On error, -1 is returned,
and errno is set appropriately.

ERRORS

	ENOSYS

	Handle has no send operation.

	EINVAL

	Some arguments were invalid.

	EPROTO

	A protocol error was encountered.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_rpc(3), flux_rpc_raw(3)

RFC 6: Flux
Remote Procedure Call Protocol [https://github.com/flux-framework/rfc/blob/master/spec_6.rst]

RFC 3: CMB1 - Flux Comms Message Broker Protocol [https://github.com/flux-framework/rfc/blob/master/spec_3.rst]

flux_response_decode(3)

SYNOPSIS

#include <flux/core.h>

int flux_response_decode (const flux_msg_t *msg,
 const char **topic,
 const char **s);

int flux_response_decode_raw (const flux_msg_t *msg,
 const char **topic,
 const void **data, int *len);

int flux_response_decode_error (const flux_msg_t *msg,
 const char *errstr);

DESCRIPTION

flux_response_decode() decodes a response message msg.

topic, if non-NULL, will be set to the message's topic string. The
storage for this string belongs to msg and should not be freed.

s, if non-NULL, will be set to the message's NULL-terminated string payload.
If no payload exists, it is set to NULL. The storage for this
string belongs to msg and should not be freed.

flux_response_decode_raw() decodes a response message with a raw payload,
setting data and len to the payload data and length. The storage for
the raw payload belongs to msg and should not be freed.

flux_response_decode_error() decodes an optional error string included
with an error response. This fails if the response is not an error,
or does not include an error string payload.

RETURN VALUE

These functions return 0 on success. On error, -1 is returned, and
errno is set appropriately.

ERRORS

	EINVAL

	The msg argument was NULL.

	EPROTO

	Message decoding failed, such as due to incorrect message type,
missing topic string, etc..

	ENOENT

	flux_response_decode_error() was called on a message with no
error response payload.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_request_encode(3), flux_rpc(3)

flux_rpc(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_rpc (flux_t *h, const char *topic,
 const char *s,
 uint32_t nodeid, int flags);

flux_future_t *flux_rpc_pack (flux_t *h, const char *topic,
 uint32_t nodeid, int flags,
 const char *fmt, ...);

flux_future_t *flux_rpc_raw (flux_t *h, const char *topic,
 const void *data, int len,
 uint32_t nodeid, int flags);

flux_future_t *flux_rpc_message (flux_t *h,
 const flux_msg_t *msg,
 uint32_t nodeid, int flags);

int flux_rpc_get (flux_future_t *f, const char **s);

int flux_rpc_get_unpack (flux_future_t *f, const char *fmt, ...);

int flux_rpc_get_raw (flux_future_t *f,
 const void **data, int *len);

DESCRIPTION

A remote procedure call (RPC) consists of a matched request and
response message exchanged with a Flux service. flux_rpc(),
flux_rpc_pack(), and flux_rpc_raw() encode and send a request message
via Flux broker handle h to a Flux service identified by topic
and nodeid. A flux_future_t object is returned which acts as a handle
for synchronization and a container for the response message which in
turn contains the RPC result.

A lower-level variant of flux_rpc(), flux_rpc_message() accepts a
pre-created request message, assigning nodeid and matchtag according
to flags.

flux_future_then(3) may be used to register a reactor callback
(continuation) to be called once the response has been received.
flux_future_wait_for(3) may be used to block until the
response has been received. Both accept an optional timeout.

flux_rpc_get(), flux_rpc_get_unpack(), and flux_rpc_get_raw()
decode the RPC result. Internally, they call flux_future_get()
to access the response message stored in the future. If the response
message has not yet been received, these functions block until it is,
or an error occurs.

REQUEST OPTIONS

The request message is encoded and sent with or without a payload
using one of the three flux_rpc() variants.

flux_rpc() attaches s, a NULL terminated string, as request
payload. If NULL, the request is encoded without a payload.

flux_rpc_pack() attaches a JSON payload encoded as a NULL terminated
string using Jansson json_pack() style arguments (see below).

flux_rpc_raw() attaches a raw payload data of length len, in bytes.
If data is NULL, the request is encoded without a payload.

nodeid affects request routing, and must be set to one of the following
values:

	FLUX_NODEID_ANY

	The request is routed to the first matching service instance.

	FLUX_NODEID_UPSTREAM

	The request is routed to the first matching service instance,
skipping over the sending rank.

	integer

	The request is routed to a specific rank.

flags may be zero or:

	FLUX_RPC_NORESPONSE

	No response is expected. The request will not be assigned a matchtag,
and the returned flux_future_t is immediately fulfilled, and may simply
be destroyed.

	FLUX_RPC_STREAMING

	The RPC is for a service that may send zero or more non-error responses,
and a final error response. ENODATA should be interpreted as a non-error
end-of-stream sentinel.

RESPONSE OPTIONS

The response message is stored in the future when the future is fulfilled.
At that time it is decoded with flux_response_decode(3). If it cannot
be decoded, or if the service returned an error, the future is fulfilled
with an error. Otherwise it is fulfilled with the response message.
If there was an error, flux_future_get() or the flux_rpc_get() variants
return an error.

flux_rpc_get() sets s (if non-NULL) to the NULL-terminated string
payload contained in the RPC response. If there was no payload, s
is set to NULL.

flux_rpc_get_unpack() decodes the NULL-terminated string payload as JSON
using Jansson json_unpack() style arguments (see below). It is an error
if there is no payload, or if the payload is not JSON.

flux_rpc_get_raw() assigns the raw payload of the RPC response message
to data and its length to len. If there is no payload, this function
will fail.

PREMATURE DESTRUCTION

If a regular RPC future is destroyed before its response is received,
the matchtag allocated to it is not immediately returned to the pool
for reuse. If an unclaimed response subsequently arrives with that
matchtag, it is returned to the pool then.

If a streaming RPC future is destroyed before its terminating response
is received, its matchtag is only returned to the pool when an unclaimed
error response is received. Non-error responses are ignored.

It is essential that services which return multiple responses verify that
requests were made with the FLUX_RPC_STREAMING flag and return an immediate
EPROTO error if they were not. See flux_respond(3).

CANCELLATION

Flux RFC 6 does not currently specify a cancellation protocol for an
individual RPC, but does stipulate that an RPC may be canceled if a disconnect
message is received, as is automatically generated by the local connector
upon client disconnection.

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

DECODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_unpack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a JSON string to a pointer to a null terminated UTF-8 string.
The resulting string is extracted by using 'json_string_value()'
internally, so it exists as long as there are still references to the
corresponding JSON string.

	n (null)

	Expect a JSON null value. Nothing is extracted.

	b (boolean)['int']

	Convert a JSON boolean value to a C int, so that true is converted to 1
and false to 0.

	i (integer)['int']

	Convert a JSON integer to a C int.

	I (integer)['int64_t']

	Convert a JSON integer to a C int64_t.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert JSON real to a C double.

	F (real)['double']

	Convert JSON number (integer or real) to a C double.

	o (any value)['json_t *']

	Store a JSON value, with no conversion, to a json_t pointer.

	O (any value)['json_t *']

	Like o, but the JSON value's reference count is incremented.

	[fmt] (array)

	Convert each item in the JSON array according to the inner format
string. fmt may contain objects and arrays, i.e. recursive value
extraction is supported.

	{fmt} (object)

	Convert each item in the JSON object according to the inner format
string fmt. The first, third, etc. format specifier represent a
key, and must by s. The corresponding argument to unpack functions
is read as the object key. The second, fourth, etc. format specifier
represent a value and is written to the address given as the corresponding
argument. Note that every other argument is read from and every other
is written to. fmt may contain objects and arrays as values, i.e.
recursive value extraction is supported. Any s representing a key
may be suffixed with ? to make the key optional. If the key is not
found, nothing is extracted.

	!

	This special format specifier is used to enable the check that all
object and array items are accessed, on a per-value basis. It must
appear inside an array or object as the last format specifier before
the closing bracket or brace.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Parsing and Validating Values [http://jansson.readthedocs.io/en/2.6/apiref.html#parsing-and-validating-values]

RETURN VALUE

flux_rpc(), flux_rpc_pack(), and flux_rpc_raw() return a flux_future_t
object on success. On error, NULL is returned, and errno is set appropriately.

flux_rpc_get(), flux_rpc_get_unpack(), and flux_rpc_get_raw() return
zero on success. On error, -1 is returned, and errno is set appropriately.

ERRORS

	ENOSYS

	Service is not available (misspelled topic string, module not loaded, etc),
or flux_t handle has no send operation.

	EINVAL

	Some arguments were invalid.

	EPROTO

	A request was malformed, the FLUX_RPC_STREAMING flag was
omitted on a request to a service that may send multiple responses,
or other protocol error occurred.

EXAMPLES

This example performs a synchronous RPC with the broker's "attr.get"
service to obtain the broker's rank.

#include <flux/core.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 flux_future_t *f;
 const char *rankstr;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");

 if (!(f = flux_rpc_pack (h, "attr.get", FLUX_NODEID_ANY, 0,
		 "{s:s}", "name", "rank")))
 log_err_exit ("flux_rpc_pack");

 if (flux_rpc_get_unpack (f, "{s:s}", "value", &rankstr) < 0)
 log_err_exit ("flux_rpc_get_unpack");

 printf ("rank is %s\n", rankstr);
 flux_future_destroy (f);

 flux_close (h);
 return (0);
}

This example registers a continuation to do the same thing asynchronously.

#include <flux/core.h>
#include "src/common/libutil/log.h"

void continuation (flux_future_t *f, void *arg)
{
 const char *rankstr;

 if (flux_rpc_get_unpack (f, "{s:s}", "value", &rankstr) < 0)
 log_err_exit ("flux_rpc_get_unpack");

 printf ("rank is %s\n", rankstr);
 flux_future_destroy (f);
}

int main (int argc, char **argv)
{
 flux_t *h;
 flux_future_t *f;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");

 if (!(f = flux_rpc_pack (h, "attr.get", FLUX_NODEID_ANY, 0,
		 "{s:s}", "name", "rank")))
 log_err_exit ("flux_rpc_pack");

 if (flux_future_then (f, -1., continuation, NULL) < 0)
 log_err_exit ("flux_future_then");

 if (flux_reactor_run (flux_get_reactor (h), 0) < 0)
 log_err_exit ("flux_reactor_run");

 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_get(3), flux_respond(3)

RFC 6: Flux
Remote Procedure Call Protocol [https://github.com/flux-framework/rfc/blob/master/spec_6.rst]

flux_send(3)

SYNOPSIS

#include <flux/core.h>

int flux_send (flux_t *h, const flux_msg_t *msg, int flags);

DESCRIPTION

flux_send() sends msg using the Flux Message broker,
previously opened with flux_open() on handle h.

flags is the logical "or" of zero or more of the following flags:

	FLUX_O_TRACE

	Dumps msg to stderr.

	FLUX_O_NONBLOCK

	If unable to send, return an error rather than block.

Internally, flags are the logical "or" of flags and the flags provided
to flux_open() when the handle was created.

The message type, topic string, and nodeid affect how the message
will be routed by the broker. These attributes are pre-set in the message.

RETURN VALUE

flux_send() returns zero on success. On error, -1 is returned, and errno
is set appropriately.

ERRORS

	ENOSYS

	Handle has no send operation.

	EINVAL

	Some arguments were invalid.

	EAGAIN

	FLUX_O_NONBLOCK was selected and flux_send() would block.

EXAMPLES

This example opens the Flux broker and publishes an event message.

#include <flux/core.h>
#include "src/common/libutil/log.h"

int main (int argc, char **argv)
{
 flux_t *h;
 flux_msg_t *msg;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("flux_open");
 if (!(msg = flux_event_encode ("snack.bar.closing", NULL)))
 log_err_exit ("flux_event_encode");
 if (flux_send (h, msg, 0) < 0)
 log_err_exit ("flux_send");
 flux_msg_destroy (msg);
 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_open(3), flux_recv(3), flux_requeue(3)

flux_shell_add_completion_ref(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_add_completion_ref (flux_shell_t *shell,
 const char *fmt,
 ...)

int flux_shell_remove_completion_ref (flux_shell_t *shell,
 const char *fmt,
 ...)

DESCRIPTION

flux_shell_add_completion_ref creates a named "completion
reference" on the shell object shell so that the shell will
not consider a job "complete" until the reference is released with
flux_shell_remove_completion_ref. Once all references have been
removed, the shells reactor is stopped with
flux_reactor_stop(shell->r).

RETURN VALUE

flux_shell_add_completion_ref returns the reference count for the
particular name, or -1 on error.

flux_shell_remove_completion_ref returns 0 on success, -1 on failure.

ERRORS

	EINVAL

	Either shell or fmt are NULL.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_reactor_stop(3)

flux_shell_add_event_context(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_add_event_context (flux_shell_t *shell,
 const char *name,
 int flags,
 const char *fmt,
 ...);

DESCRIPTION

Add extra context that will be emitted with shell standard event
name using Jansson json_pack() style arguments. The flags
parameter is currently unused.

RETURN VALUE

Returns 0 on success, -1 if shell, name or fmt are NULL.

ERRORS

	EINVAL

	shell, name or fmt are NULL.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_add_event_handler(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_add_event_handler (flux_shell_t *shell,
 const char *subtopic,
 flux_msg_handler_f cb,
 void *arg);

DESCRIPTION

When the shell initializes, it subscribes to all events with the
substring shell-JOBID., where JOBID is the jobid under which the
shell is running. flux_shell_add_event_handler() registers a handler
to be run for a subtopic within the shell's event namespace, e.g.
registering a handler for subtopic "kill" will invoke the handler
cb whenever an event named shell-JOBID.kill is generated.

RETURN VALUE

Returns -1 if shell, shell->h, subtopic or cb are NULL, or if
underlying calls to asprintf() or flux_msg_handler_create() fail.

ERRORS

	EINVAL

	shell, shell->h, subtopic or cb are NULL.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_aux_set(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

typedef void (*flux_free_f)(void *arg);

int flux_shell_aux_set (flux_shell_t *shell,
 const char *name,
 void *aux,
 flux_free_f free_fn);

void * flux_shell_aux_get (flux_shell_t *shell,
 const char *key);

DESCRIPTION

flux_shell_aux_set() attaches application-specific data to the parent
object. It stores data aux by key name, with optional destructor
destroy. The destructor, if non-NULL, is called when the parent
object is destroyed, or when key is overwritten by a new value. If aux
is NULL, the destructor for a previous value, if any is called, but no
new value is stored. If name is NULL, aux is stored anonymously.

flux_shell_aux_get() retrieves application-specific data by name. If
the data was stored anonymously, it cannot be retrieved.

The implementation (as opposed to the header file) uses the variable
names shell, key, val and free_fn, which may be more
intuitive.

In most cases the key, value and free function will be non-null.
Several exceptions are supported.

First, if key and val are non-NULL but free_fn is null, the
caller is responsible for memory management associated with the
value.

Second, if key is NULL but val and free_fun are not NULL,
the lifetime of the object is tied to the lifetime of the underlying
aux object; the object will be destroyed during the destruction
of the aux. The value cannot be retrieved.

Third, a non-null key and a null val deletes the value previously
associated with the key by calling its previously-associated free_fn,
if the destructor exists.

RETURN VALUE

flux_aux_set() returns 0 on success, or -1 on failure, with errno set.

flux_shell_aux_get() returns data on success, or NULL on failure,
with errno set.

ERRORS

	EINVAL

	
shell is null; or

both name (aka key) and aux (aka val) are null; or

free_fn is not null but aux is; or

free_fn and name are both null.

	ENOMEM

	Out of memory.

	ENOENT

	flux_aux_get() could not find an entry for key.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_aux_get(3), flux_aux_set(3)

flux_shell_current_task(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

flux_shell_task_t *flux_shell_current_task (flux_shell_t *shell);

flux_shell_task_t *flux_shell_task_first (flux_shell_t *shell);

flux_shell_task_t *flux_shell_task_next (flux_shell_t *shell);

DESCRIPTION

flux_shell_task_first and flux_shell_task_next are used to iterate
over all current tasks known to the shell.

flux_shell_current_task returns the current task for task_init,
task_exec and task_exec callbacks and NULL in any other
context.

flux_shell_task_first and flux_shell_task_next return the first
and next tasks, respectively.

RETURN VALUE

The relevant flux_shell_task_t* value, or NULL on error.

ERRORS

	EINVAL

	shell is NULL.

	EAGAIN

	There are no tasks.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_get_flux(3)

SYNOPSIS

#include <flux/shell.h>

flux_t *flux_shell_get_flux (flux_shell_t *shell);

DESCRIPTION

Returns the Flux handle.

RETURN VALUE

Returns the Flux handle.

ERRORS

No error conditions are possible.

EXAMPLE

// Set a timer in flux_plugin_init().

void flux_plugin_init (flux_plugin_t *p){

// Get the shell handle,
flux_shell_t *shell = flux_plugin_get_shell(p);

// use that to get the flux handle,
flux_t *flux = flux_shell_get_flux(shell);

// and use that to get the reactor handle.
flux_reactor_t *reactor = flux_get_reactor(flux);

flux_watcher_t* timer = flux_timer_watcher_create(reactor, 0.1, 0.1, timer_cb, NULL);
flux_watcher_start(timer);

....

RESOURCES

Github: http://github.com/flux-framework

flux_shell_get_info(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_get_info (flux_shell_t *shell,
 char **json_str);

int flux_shell_info_unpack (flux_shell_t *shell,
 const char *fmt,
 ...);

int flux_shell_get_rank_info (flux_shell_t *shell,
 int shell_rank,
 char **json_str);

int flux_shell_rank_info_unpack (flux_shell_t *shell,
 int shell_rank,
 const char *fmt,
 ...);

DESCRIPTION

flux_shell_get_info() returns shell information as a json string
with the following layout:

"jobid":I,
"rank":i,
"size":i,
"ntasks";i,
"service";s,
"options": { "verbose":b, "standalone":b },
"jobspec":o,
"R":o

flux_shell_get_rank_info() returns shell rank information as a json
string with the following layout:

"broker_rank":i,
"ntasks":i
"taskids":s
"resources": { "cores":s, ... }

where broker_rank is the broker rank on which the target shell rank
of the query is running, ntasks is the number of tasks running under
that shell rank, taskids is a list of task id assignments for those
tasks (an RFC 22 idset string), and resources is a dictionary of
resource name to resource ids assigned to the shell rank.

flux_shell_info_unpack() and flux_shell_rank_info_unpack()
accomplished the same thing with Jansson-style formatting arguments.

If shell_rank is set to -1, the current shell rank is used.

RETURN VALUE

All functions return 0 on success and -1 on error.

ERRORS

	EINVAL

	if shell is NULL, or either json_str or fmt are NULL, or if
shell_rank is less than -1.

SEE ALSO

For an overview of the Jansson API, see https://jansson.readthedocs.io/en/2.8/apiref.html.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_get_jobspec_info(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_get_jobspec_info (flux_shell_t *shell,
 char **json_str);

int flux_shell_jobspec_info_unpack (flux_shell_t *shell,
 const char *fmt,
 ...);

DESCRIPTION

flux_shell_get_jobspec_info() returns jobspec summary information
from the flux job shell as a json string. The only key guaranteed to
be in the returned JSON object is the jobspec version, e.g.

	::

	{"version": 1}

For jobspec version 1, the following keys are also available:

{
 "ntasks":i, # number of tasks requested
 "nslots":i, # number of task slots
 "cores_per_slot":i # number of cores per task slot
 "nnodes":i # number of nodes requested, -1 if unset
 "slots_per_node":i # number of slots per node, -1 if unavailable
 }

This summary information is derived from the jobspec by the shell and
is shared with plugins in order to avoid duplication of effort.

Currently only version 1 jobspec is supported.

flux_shell_jobspec_info_unpack() accomplishes the same thing with
Jansson-style formatting arguments.

RETURN VALUE

All functions return 0 on success and -1 on error.

ERRORS

	EINVAL

	if shell is NULL, or either json_str or fmt are NULL, or if
shell_rank is less than -1.

SEE ALSO

For an overview of the Jansson API, see https://jansson.readthedocs.io/en/2.8/apiref.html.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_getenv(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

const char * flux_shell_getenv (flux_shell_t *shell,
 const char *name);

int flux_shell_get_environ (flux_shell_t *shell,
 char **json_str);

int flux_shell_setenvf (flux_shell_t *shell,
 int overwrite,
 const char *name,
 const char *fmt,
 ...)

int flux_shell_unsetenv (flux_shell_t *shell,
 const char *name);

DESCRIPTION

flux_shell_getenv() returns the value of an environment variable from the global job environment.
flux_shell_get_environ() returns 0 on success with *json_str set
to an allocated JSON string, or -1 on failure with errno set.
flux_shell_setenvf() sets an environment variable in the global job
environment using printf(3) style format arguments.
flux_shell_unsetenv() unsets the specified environment variable in the global job environment.

RETURN VALUE

flux_shell_getenv() returns NULL if either shell or name is NULL, or if the variable is not found.

flux_shell_get_environ() returns a json string on success or NULL on failure.

flux_shell_setenvf() and flux_shell_unsetenv() return 0 on success and -1 on failure.

ERRORS

	EINVAL

	shell, name or fmt is NULL.

	EEXIST

	The variable already exists and overwrite was not non-zero (flux_shell_setenvf()).

RESOURCES

Github: http://github.com/flux-framework

flux_shell_getopt(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

int flux_shell_getopt (flux_shell_t *shell,
 const char *name,
 char **json_str);

int flux_shell_getopt_unpack (flux_shell_t *shell,
 const char *name,
 const char *fmt,
 ...);

int flux_shell_setopt (flux_shell_t *shell,
 const char *name,
 const char *json_str);

int flux_shell_setopt_pack (flux_shell_t *shell,
 const char *name,
 const char *fmt,
 ...);

DESCRIPTION

flux_shell_getopt() gets shell option name as a JSON string from jobspec
attributes.system.shell.options.name.

flux_shell_setopt() sets shell option name, making it available to
subsequent calls from flux_shell_getopt(). If json_str is NULL,
the option is unset.

flux_shell_getopt_unpack() and flux_shell_setopt_unpack() use Jansson
format strings to accomplish the same functionality.

RETURN VALUE

flux_shell_getopt() and flux_shell_getopt_unpack() return 1 on success, 0 if name was not set,
and -1 on error,

flux_shell_setopt() and flux_shell_setopt_pack return 0 on success and -1 on error.

ERRORS

	EINVAL

	name or shell is NULL.

	ENOMEM

	The process has exhausted its memory.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_killall(3)

SYNOPSIS

#include <flux/shell.h>

void flux_shell_killall (flux_shell_t *shell,
 int sig);

DESCRIPTION

Sends the signal sig to all processes running in shell. No errors are
set, but the call returns immediately if shell is NULL or if sig is
zero or negative.

RETURN VALUE

None.

ERRORS

None.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_log(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

void flux_shell_log (const char *component,
 int level,
 const char *file,
 int line,
 const char *fmt,
 ...)

int flux_shell_err (const char *component,
 const char *file,
 int line,
 int errnum,
 const char *fmt,
 ...)

void flux_shell_fatal (const char *component,
 const char *file,
 int line,
 int errnum,
 int exit_code,
 const char *fmt,
 ...)

void flux_shell_raise (const char *type,
 int severity,
 const char *fmt,
 ...)

int flux_shell_log_setlevel (int level,
 const char *dest);

DESCRIPTION

flux_shell_log() logs a message at for shell component or plugin
component at level to all loggers registered to receive messages
at that severity or greater. See flux_log for a list of supported levels.

The following macros handle common levels. For external shell plugins,
the required macro FLUX_SHELL_PLUGIN_NAME is automatically substituted
for the component in all macros.

#define shell_trace(...) \

#define shell_debug(...) \

#define shell_log(...) \

#define shell_warn(...) \

#define shell_log_error(...) \

flux_shell_err() logs a message at FLUX_SHELL_ERROR level,
additionally appending the result of strerror(errnum) for
convenience. Macros include:

#define shell_log_errn(errn, ...) \

#define shell_log_errno(...) \

Note that errno is the standard global value defined in errno.h
and errn is a user-provided error code.

flux_shell_fatal() logs a message at FLUX_SHELL_FATAL level and
schedules termination of the job shell. This may generate an
exception if tasks are already running. Exits with exit_code.
While the macro names are similar to those using flux_shell_err(),
note that the choices of errnum are either 0 or errno.

#define shell_die(code,...) \

#define shell_die_errno(code,...) \

flux_shell_raise() explicitly raises an exception for the current
job of the given type and severity. Exceptions of severity 0
will result in termination of the job by the execution system.

flux_shell_log_setlevel() sets default severity of logging
destination dest to level. If dest is NULL then the internal
log dispatch level is set (i.e. no messages above severity level will
be logged to any log destination). Macros include:

#define shell_set_verbose(n) \
flux_shell_log_setlevel(FLUX_SHELL_NOTICE+n, NULL)

#define shell_set_quiet(n) \
flux_shell_log_setlevel(FLUX_SHELL_NOTICE-n, NULL)

RETURN VALUE

flux_shell_err() returns -1 with errno = errnum, so that the
function can be used as:
return flux_shell_err(…​);

flux_shell_log_setlevel() will return -1 and set errno to EINVAL
if the requested level is not valid or if dest is not a valid
pointer to a logger shell.

ERRORS:

	EINVAL

	level or dest is not valid.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_log(3)

flux_shell_plugstack_call(3)

SYNOPSIS

#include <flux/shell.h>

int flux_shell_plugstack_call (flux_shell_t *shell,
 const char *topic,
 flux_plugin_arg_t *args);

DESCRIPTION

The job shell implements a flexible plugin architecture which allows
registration of one or more callback functions on arbitrary topic
names. The stack of functions "listening" on a given topic string is
called the "plugin stack". flux_shell_plugstack_call() exports the
ability to call into the plugin stack so that plugins can invoke
callbacks from other plugins.

RETURN VALUE

Returns 0 on success and -1 on failure, setting errno.

ERRORS:

	EINVAL

	shell or topic are NULL.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_rpc_pack(3)

SYNOPSIS

#include <flux/shell.h>
#include <errno.h>

flux_future_t *flux_shell_rpc_pack (flux_shell_t *shell,
 const char *method,
 int shell_rank,
 int flags,
 const char *fmt,
 ...);

DESCRIPTION

Send a remote procedure call method to another shell in the same
job at shell rank shell_rank.

RETURN VALUE

Returns NULL on failure.

ERRORS

	EINVAL

	shell, method or fmt are NULL, or if rank is less than 0.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_service_register(3)

SYNOPSIS

#include <flux/shell.h>

int flux_shell_service_register (flux_shell_t *shell,
 const char *method,
 flux_msg_handler_f cb,
 void *arg);

DESCRIPTION

The job shell registers a unique service name with the flux broker on
startup, and posts the topic string for this service in the context of
the shell.init event. flux_shell_service_register() allows
registration of a request handler cb for subtopic method on this
service endpoint, allowing other job shells and/or flux commands to
interact with arbitrary services within a job.

RETURN VALUE

Returns -1 on failure, 0 on success.

ERRORS

	EINVAL

	shell, method or cb is NULL.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_msg_handler_create(3)

flux_shell_task_channel_subscribe(3)

SYNOPSIS

#include <flux/shell.h>

int flux_shell_task_channel_subscribe (flux_shell_task_t *task,
 const char *channel,
 flux_shell_task_io_f cb,
 void *arg);

DESCRIPTION

Call cb when shell task output channel name is ready for reading.

Callback can then call flux_shell_task_get_subprocess() and use
flux_subprocess_read() or getline() on the result to get
available data. Only one subscriber per stream is allowed.

RETURN VALUE

Returns 0 on success and -1 on error.

Not yet implemented.

ERRORS

	EEXIST

	flux_shell_task_channel_subscribe() is called on a stream with an
existing subscriber

RESOURCES

Github: http://github.com/flux-framework

flux_shell_task_get_info(3)

SYNOPSIS

#include <flux/shell.h>

int flux_shell_task_get_info (flux_shell_task_t *task,
 char **json_str);

int flux_shell_task_info_unpack (flux_shell_task_t *task,
 const char *fmt, ...);

DESCRIPTION

Returns task info either as a json string (specified below) or
using Jansson-style parameters. The structure of the former is:

"localid":i,
"rank":i,
"state":s,
"pid":I,
"wait_status":i,
"exitcode":i,
"signaled":i

RETURN VALUE

Returns 0 on success and -1 on failure. A failure will not
necessarily set errno.

ERRORS

	EINVAL

	If task or json_str is NULL.

RESOURCES

Github: http://github.com/flux-framework

flux_shell_task_subprocess(3)

SYNOPSIS

#include <flux/shell.h>

flux_subprocess_t *flux_shell_task_subprocess (flux_shell_task_t *task)

flux_cmd_t *flux_shell_task_cmd (flux_shell_task_t *task)

DESCRIPTION

flux_shell_task_subprocess returns the subprocess for a shell
task in task_fork and task_exit callbacks.

flux_shell_task_cmd returns the cmd structure for a shell task.

RETURN VALUE

flux_shell_task_subprocess returns the proc field of the
task, and flux_shell_task_cmd returns the cmd field,
or NULL on error.

ERRORS

	EINVAL

	task is NULL.

RESOURCES

Github: http://github.com/flux-framework

flux_signal_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_signal_watcher_create (flux_reactor_t *r,
 int signum,
 flux_watcher_f callback,
 void *arg);

int flux_signal_watcher_get_signum (flux_watcher_t *w);

DESCRIPTION

flux_signal_watcher_create() creates a reactor watcher that
monitors for receipt of signal signum.

The callback revents argument should be ignored.

When one callback is shared by multiple watchers, the signal number that
triggered the event can be obtained with flux_signal_watcher_get_signum().

RETURN VALUE

flux_signal_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_stat_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_stat_watcher_create (flux_reactor_t *r,
 const char *path,
 double interval,
 flux_watcher_f callback,
 void *arg);

void flux_stat_watcher_get_rstat (flux_watcher_t *w,
 struct stat *stat,
 struct stat *prev);

DESCRIPTION

flux_stat_watcher_create() creates a reactor watcher that
monitors for changes in the status of the file system object
represented by path. If the file system object exists,
inotify(2) is used, if available; otherwise the reactor polls
the file every interval seconds. A value of zero selects a
conservative default (currently five seconds).

The callback revents argument should be ignored.

flux_stat_watcher_get_rstat () may be used to obtain the status
within callback. If non-NULL, stat receives the current status.
If non-NULL, prev receives the previous status.

If the object does not exist, stat->st_nlink will be zero and other
status fields are undefined. The appearance/disappearance of a file
is considered a status change like any other.

RETURN VALUE

flux_stat_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3), stat(2)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_sync_create(3)

SYNOPSIS

#include <flux/core.h>

flux_future_t *flux_sync_create (flux_t *h, double minimum);

DESCRIPTION

flux_sync_create() creates a future that is fulfilled when
the system heartbeat message is received. System heartbeats are
event messages published periodically at a configurable interval.
Synchronizing Flux internal overhead to the heartbeat can, in theory,
reduce disruption to bulk synchronous applications.

If minimum is greater than zero, it establishes a minimum time in seconds
between fulfillments. Heartbeats that arrive too soon after the last one
are ignored. This may be used to protect from thrashing if the heartbeat
period is set too fast, or if heartbeats arrive close to one another in time
due to overlay network congestion.

A maximum time between fulfillments may be established by specifying a
continuation timeout with flux_future_then(). If the timeout expires,
the future is fulfilled with an error (ETIMEDOUT), as usual.

On each fulfillment, flux_future_reset() should be called to enable
the future to be fulfilled again, and to re-start any timeout.

RETURN VALUE

flux_sync_create() returns a future, or NULL on failure with
errno set.

ERRORS

	EINVAL

	One or more arguments were invalid.

	ENOMEM

	Out of memory.

EXAMPLE

Set up a continuation callback for each heartbeat that arrives at least
sync_min seconds from the last, with a timeout of sync_max seconds:

#include <flux/core.h>
#include "src/common/libutil/log.h"

const double sync_min = 1.0;
const double sync_max = 60.0;

void sync_continuation (flux_future_t *f, void *arg)
{
 // do work here
 flux_future_reset (f);
}

int main (int argc, char **argv)
{
 flux_t *h;
 flux_future_t *f;

 if (!(h = flux_open (NULL, 0)))
 log_err_exit ("could not connect to broker");

 if (!(f = flux_sync_create (h, sync_max)))
 log_err_exit ("error creating future");

 if (flux_future_then (f, sync_min, sync_continuation, NULL) < 0)
 log_err_exit ("error registering continuation");

 if (flux_reactor_run (flux_get_reactor (h), 0) < 0)
 log_err_exit ("reactor returned wtih error");

 flux_future_destroy (f);

 flux_close (h);
 return (0);
}

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_future_then(3), flux_future_get(3), flux_future_reset(3)

flux_timer_watcher_create(3)

SYNOPSIS

#include <flux/core.h>

typedef void (*flux_watcher_f)(flux_reactor_t *r,
 flux_watcher_t *w,
 int revents, void *arg);

flux_watcher_t *flux_timer_watcher_create (flux_reactor_t *r,
 double after, double repeat,
 flux_watcher_f callback,
 void *arg);

void flux_timer_watcher_reset (flux_watcher_t *w,
 double after, double repeat);

DESCRIPTION

flux_timer_watcher_create() creates a flux_watcher_t object which
monitors for timer events. A timer event occurs when after seconds
have elapsed, and optionally again every repeat seconds.
When events occur, the user-supplied callback is invoked.

If after is 0., the flux_watcher_t will be immediately ready
when the reactor is started. If repeat is 0., the flux_watcher_t
will automatically be stopped when after seconds have elapsed.

Note that after is internally referenced to reactor time, which is
only updated when the reactor is run/created, and therefore
can be out of date. Use flux_reactor_now_update(3) to manually
update reactor time before creating timer watchers in such cases.
Refer to "The special problem of time updates" in the libev manual
for more information.

To restart a timer that has been automatically stopped, you must reset
the after and repeat values with flux_timer_watcher_reset() before
calling flux_watcher_start().

The callback revents argument should be ignored.

Note: the Flux reactor is based on libev. For additional information
on the behavior of timers, refer to the libev documentation on ev_timer.

RETURN VALUE

flux_timer_watcher_create() returns a flux_watcher_t object on success.
On error, NULL is returned, and errno is set appropriately.

ERRORS

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_watcher_start(3), flux_reactor_start(3), flux_reactor_now(3)

libev home page [http://software.schmorp.de/pkg/libev.html]

flux_watcher_start(3)

SYNOPSIS

void flux_watcher_start (flux_watcher_t *w);

void flux_watcher_stop (flux_watcher_t *w);

void flux_watcher_destroy (flux_watcher_t *w);

double flux_watcher_next_wakeup (flux_watcher_t *w);

DESCRIPTION

flux_watcher_start() activates a flux_watcher_t object w so that it
can receive events. If w is already active, the call has no effect.
This may be called from within a flux_watcher_f callback.

flux_watcher_stop() deactivates a flux_watcher_t object w so that it
stops receiving events. If w is already inactive, the call has no effect.
This may be called from within a flux_watcher_f callback.

flux_watcher_destroy() destroys a flux_watcher_t object w,
after stopping it. It is not safe to destroy a watcher object within a
flux_watcher_f callback.

flux_watcher_next_wakeup() returns the absolute time that the watcher
is supposed to trigger next. This function only works for timer and
periodic watchers, and will return a value less than zero with errno
set to EINVAL otherwise.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux_reactor_create (3)

idset_create(3)

SYNOPSIS

#include <flux/idset.h>

struct idset *idset_create (size_t slots, int flags);

void idset_destroy (struct idset *idset);

struct idset *idset_copy (const struct idset *idset);

int idset_set (struct idset *idset, unsigned int id);

int idset_range_set (struct idset *idset,
 unsigned int lo, unsigned int hi);

int idset_clear (struct idset *idset, unsigned int id);

int idset_range_clear (struct idset *idset,
 unsigned int lo, unsigned int hi)

bool idset_test (const struct idset *idset, unsigned int id);

unsigned int idset_first (const struct idset *idset);

unsigned int idset_next (const struct idset *idset, unsigned int prev);

unsigned int idset_last (const struct idset *idset)

size_t idset_count (const struct idset *idset);

bool idset_equal (const struct idset *set1, const struct idset *set2);

USAGE

cc [flags] files -lflux-idset [libraries]

DESCRIPTION

An idset is a set of numerically sorted, non-negative integers.
It is internally represented as a van Embde Boas (or vEB) tree.
Functionally it behaves like a bitmap, and has space efficiency
comparable to a bitmap, but performs operations (insert, delete,
lookup, findNext, findPrevious) in O(log(m)) time, where pow (2,m)
is the number of slots in the idset.

idset_create() creates an idset. slots specifies the highest
numbered id it can hold, plus one. The size is fixed unless
flags specify otherwise (see FLAGS below).

idset_destroy() destroys an idset.

idset_copy() copies an idset.

idset_set() and idset_clear() set or clear id.

idset_range_set() and idset_range_clear() set or clear an inclusive
range of ids, from lo to hi.

idset_test() returns true if id is set, false if not.

idset_first() and idset_next() can be used to iterate over ids
in the set, returning IDSET_INVALID_ID at the end. idset_last()
returns the last (highest) id, or IDSET_INVALID_ID if the set is
empty.

idset_count() returns the number of ids in the set.

idset_equal() returns true if the two idset objects set1 and set2
are equal sets, i.e. the sets contain the same set of integers.

FLAGS

	IDSET_FLAG_AUTOGROW

	Valid for idset_create() only. If set, the idset will grow to
accommodate any id inserted into it. The internal vEB tree is doubled
in size until until the new id can be inserted. Resizing is a costly
operation that requires all ids in the old tree to be inserted into
the new one.

RETURN VALUE

idset_copy() returns an idset on success which must be freed with
idset_destroy(). On error, NULL is returned with errno set.

idset_first(), idset_next(), and idset_last() return an id,
or IDSET_INVALID_ID if no id is available.

idset_equal() returns true if set1 and set2 are equal sets,
or false if they are not equal, or either argument is NULL.

Other functions return 0 on success, or -1 on error with errno set.

ERRORS

	EINVAL

	One or more arguments were invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

idset_encode(3), idset_add(3)

RFC 22: Idset String Representation [https://github.com/flux-framework/rfc/blob/master/spec_22.rst]

idset_encode(3)

SYNOPSIS

#include <flux/idset.h>

char *idset_encode (const struct idset *idset, int flags);

struct idset *idset_decode (const char *s);

struct idset *idset_ndecode (const char *s, size_t len);

USAGE

cc [flags] files -lflux-idset [libraries]

DESCRIPTION

Refer to idset_create(3) for a general description of idsets.

idset_encode() creates a string from idset. The string contains
a comma-separated list of ids, potentially modified by flags
(see FLAGS below).

idset_decode() creates an idset from a string s. The string may
have been produced by idset_encode(). It must consist of comma-separated
non-negative integer ids, and may also contain hyphenated ranges.
If enclosed in square brackets, the brackets are ignored. Some examples
of valid input strings are:

1,2,5,4

1-4,7,9-10

42

[99-101]

idset_ndecode() creates an idset from a sub-string s defined by
length len.

FLAGS

	IDSET_FLAG_BRACKETS

	Valid for idset_encode() only. If set, the encoded string will be
enclosed in brackets, unless the idset is a singleton (contains only
one id).

	IDSET_FLAG_RANGE

	Valid for idset_encode() only. If set, any consecutive ids are
compressed into hyphenated ranges in the encoded string.

RETURN VALUE

idset_decode() and idset_ndecode() return idset on success which must
be freed with idset_destroy(3). On error, NULL is returned with errno set.

idset_encode() returns a string on success which must be freed
with free(). On error, NULL is returned with errno set.

ERRORS

	EINVAL

	One or more arguments were invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

idset_create(3)

RFC 22: Idset String Representation [https://github.com/flux-framework/rfc/blob/master/spec_22.rst]

idset_add(3)

SYNOPSIS

#include <flux/idset.h>

struct idset *idset_union (const struct idset *a,
 const struct idset *b);

struct idset *idset_difference (const struct idset *a,
 const struct idset *b);

struct idset *idset_intersect (const struct idset *a,
 const struct idset *b);

int idset_add (struct idset *a,
 const struct idset *b);

int idset_subtract (struct idset *a,
 const struct idset *b);

bool idset_has_intersection (const struct idset *a,
 const struct idset *b);

#define idset_clear_all (x) idset_subtract (x, x)

USAGE

cc [flags] files -lflux-idset [libraries]

DESCRIPTION

Refer to idset_create(3) for a general description of idsets.

idset_union() creates a new idset that is the union of a and b.

idset_difference() creates a new idset that is a with the members of
b removed.

idset_intersect() creates a new idset containing only members of a
and b that are in both sets.

idset_add() adds the members of b to a.

idset_subtract() removes the members of b from a.

idset_has_intersection() tests whether a and b have any members
in common.

idset_clear_all() removes all members of x

RETURN VALUE

idset_union(), idset_difference(), and idset_intersect() return an
idset on success which must be freed with idset_destroy(). On error,
NULL is returned with errno set.

idset_add(), idset_subtract(), and idset_clear_all() return 0
on success. On error, -1 is returned with errno set.

idset_has_intersection() returns true or false.

ERRORS

	EINVAL

	One or more arguments were invalid.

	ENOMEM

	Out of memory.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

idset_encode(3), idset_encode(3)

RFC 22: Idset String Representation [https://github.com/flux-framework/rfc/blob/master/spec_22.rst]

flux_jobtap_get_flux(3)

SYNOPSIS

#include <flux/core.h>
#include <flux/jobtap.h>

flux_t *flux_jobtap_get_flux (flux_plugin_t *p);

int flux_jobtap_service_register (flux_plugin_t *p,
 const char *method,
 flux_msg_handler_f cb,
 void *arg);

int flux_jobtap_reprioritize_all (flux_plugin_t *p);

int flux_jobtap_reprioritize_job (flux_plugin_t *p,
 flux_jobid_t id,
 unsigned int priority);

int flux_jobtap_priority_unavail (flux_plugin_t *p,
 flux_plugin_arg_t *args);

int flux_jobtap_reject_job (flux_plugin_t *p,
 flux_plugin_arg_t *args,
 const char *fmt, ...);

DESCRIPTION

These interfaces are used by Flux jobtap plugins which are used to
extend the job manager broker module.

flux_jobtap_get_flux() returns the job manager's Flux handle given
the plugin's flux_plugin_t *. This can be used by a jobtap plugin
to send RPCs, schedule timer watchers, or other asynchronous work.

flux_jobtap_service_register() registers a service name method
under the job manager which will be handled by the provided message
handler cb. The constructed service name will be
job-manager.<name>.<method> where name is the name of the plugin
as returned by flux_plugin_get_name(3). As such, this call may
fail if the jobtap plugin has not yet set a name for itself using
flux_plugin_set_name(3).

flux_jobtap_reprioritize_all() requests that the job manager begin
reprioritization of all pending jobs, i.e. jobs in the PRIORITY and
SCHED states. This will result on each job having a job.priority.get
callback invoked on it.

flux_jobtap_reprioritize_job() allows a jobtap plugin to asynchronously
assign the priority of a job.

flux_jobtap_priority_unavail() is a convenience function which may
be used by a plugin in the job.state.priority priority callback to
indicate that a priority for the job is not yet available. It can be
called as:

return flux_jobtap_priority_unavail (p, args);

flux_jobtap_reject_job() is a convenience function which may be used
by a plugin from the job.validate callback to reject a job before its
submission is fully complete. The error and optional message supplied in
fmt will be returned to the originating job submission request. This
function returns -1 so that it may be conveniently called as:

return flux_jobtap_reject_job (p, args,
 "User exceeded %d jobs",
 limit);

RETURN VALUE

flux_jobtap_get_flux() returns a flux_t * handle on success. NULL
is returned with errno set to EINVAL if the supplied flux_plugin_t *p
is not a jobtap plugin handle.

flux_jobtap_reject_job() always returns -1 so that it may be used
to exit the job.validate callback.

The remaining functions return 0 on success, -1 on failure.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-jobtap-plugins(7)

ENCODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_pack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a null terminated UTF-8 string to a JSON string.

	s# (string)['const char *', 'int']

	Convert a UTF-8 buffer of a given length to a JSON string.

	s% (string)['const char *', 'size_t']

	Like s# but the length argument is of type size_t.

	+ ['const char *']

	Like s, but concatenate to the previous string.
Only valid after a string.

	+# ['const char *', 'int']

	Like s#, but concatenate to the previous string.
Only valid after a string.

	+% ['const char *', 'size_t']

	Like +#, but the length argument is of type size_t.

	n (null)

	Output a JSON null value. No argument is consumed.

	b (boolean)['int']

	Convert a C int to JSON boolean value. Zero is converted to
false and non-zero to true.

	i (integer)['int']

	Convert a C int to JSON integer.

	I (integer)['int64_t']

	Convert a C int64_t to JSON integer.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert a C double to JSON real.

	o (any value)['json_t *']

	Output any given JSON value as-is. If the value is added to an array
or object, the reference to the value passed to o is stolen by the
container.

	O (any value)['json_t *']

	Like o, but the argument's reference count is incremented. This
is useful if you pack into an array or object and want to keep the reference
for the JSON value consumed by O to yourself.

	[fmt] (array)

	Build an array with contents from the inner format string. fmt may
contain objects and arrays, i.e. recursive value building is supported.

	{fmt} (object)

	Build an object with contents from the inner format string fmt.
The first, third, etc. format specifier represent a key, and must be a
string as object keys are always strings. The second, fourth, etc.
format specifier represent a value. Any value may be an object or array,
i.e. recursive value building is supported.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Building Values [http://jansson.readthedocs.io/en/2.6/apiref.html#building-values]

DECODING JSON PAYLOADS

Flux API functions that are based on Jansson's json_unpack()
accept the following tokens in their format string.
The type in parenthesis denotes the resulting JSON type, and
the type in brackets (if any) denotes the C type that is expected as
the corresponding argument or arguments.

	s (string)['const char *']

	Convert a JSON string to a pointer to a null terminated UTF-8 string.
The resulting string is extracted by using 'json_string_value()'
internally, so it exists as long as there are still references to the
corresponding JSON string.

	n (null)

	Expect a JSON null value. Nothing is extracted.

	b (boolean)['int']

	Convert a JSON boolean value to a C int, so that true is converted to 1
and false to 0.

	i (integer)['int']

	Convert a JSON integer to a C int.

	I (integer)['int64_t']

	Convert a JSON integer to a C int64_t.
Note: Jansson expects a json_int_t here without committing to a size,
but Flux guarantees that this is a 64-bit integer.

	f (real)['double']

	Convert JSON real to a C double.

	F (real)['double']

	Convert JSON number (integer or real) to a C double.

	o (any value)['json_t *']

	Store a JSON value, with no conversion, to a json_t pointer.

	O (any value)['json_t *']

	Like o, but the JSON value's reference count is incremented.

	[fmt] (array)

	Convert each item in the JSON array according to the inner format
string. fmt may contain objects and arrays, i.e. recursive value
extraction is supported.

	{fmt} (object)

	Convert each item in the JSON object according to the inner format
string fmt. The first, third, etc. format specifier represent a
key, and must by s. The corresponding argument to unpack functions
is read as the object key. The second, fourth, etc. format specifier
represent a value and is written to the address given as the corresponding
argument. Note that every other argument is read from and every other
is written to. fmt may contain objects and arrays as values, i.e.
recursive value extraction is supported. Any s representing a key
may be suffixed with ? to make the key optional. If the key is not
found, nothing is extracted.

	!

	This special format specifier is used to enable the check that all
object and array items are accessed, on a per-value basis. It must
appear inside an array or object as the last format specifier before
the closing bracket or brace.

Whitespace, : (colon) and , (comma) are ignored.

These descriptions came from the Jansson 2.6 manual.

See also: Jansson API: Parsing and Validating Values [http://jansson.readthedocs.io/en/2.6/apiref.html#parsing-and-validating-values]

man5

File formats and conventions

	flux-config-bootstrap(5)

flux-config-bootstrap(5)

DESCRIPTION

The broker discovers the size of the Flux instance, the broker's rank,
and overlay network wireup information either dynamically using a PMI
service, such as when being launched by Flux or another resource manager,
or statically using the bootstrap section of the Flux configuration,
such as when being launched by systemd.

The default bootstrap mode is PMI. To select config file bootstrap,
specify the config directory with the --config-path=PATH broker command
line option or set FLUX_CONF_DIR in the broker's environment. Ensure that
this directory contains a file that defines the bootstrap section.

CONFIG FILES

Flux uses the TOML configuration file format. The bootstrap section is
a TOML table containing the following keys. Each node in a cluster is
expected to bootstrap from an identical config file.

KEYWORDS

	enable_ipv6

	(optional) Boolean value for enabling IPv6. By default only IPv4 is
enabled. Note that setting this to true prevents binding to a named
interface that only supports IPv4.

	curve_cert

	(optional) Path to a CURVE certificate generated with flux-keygen(1).
The certificate should be identical on all broker ranks.
It is required for instance sizes > 1.

	default_port

	(optional) The value is an integer port number that is substituted
for the token %p in the other keys.

	default_bind

	(optional) The value is a ZeroMQ endpoint URI that is used for host
entries that do not explicitly set a bind address. The tokens
%p and %h are replaced with the default port and the host
for the current host entry.

	default_connect

	(optional) The value is a ZeroMQ endpoint URI that is used for host
entries that do not explicitly set a connect address. The tokens
%p and %h are replaced with the default port and the host
for the current host entry.

	hosts

	(optional) A rank-ordered array of host entries. Each host entry is
a TOML table containing at minimum the host key. The broker determines
its rank by matching its hostname in the hosts array and taking the array
index. An empty or missing hosts array implies a standalone (single
broker) instance. The entry for a broker with downstream peers must
either assign the bind key to a ZeroMQ endpoint URI, or the default_bind
URI described above is used. The entry for a broker with downstream peers
must also either assign the connect key to a ZeroMQ endpoint URI, or
the default_connect URI described above is used. The same %h and %p
substitutions work here as well.

COMPACT HOSTS

Since it would be tedious to repeat host entries for every compute
node in a large cluster, the hosts array may be abbreviated using
RFC29 hostlists. For example, the list of hosts foo0, foo1, foo2,
foo3, foo18, foo4, foo20 can be represented as "foo[0-3,18,4,20]".

EXAMPLE

[bootstrap]

default_port = 8050
default_bind = "tcp://en0:%p"
default_connect = "tcp://e%h:%p"

hosts = [
 {
 host="fluke0",
 bind="tcp://en4:9001",
 connect="tcp://fluke-mgmt:9001"
 },
 { host = "fluke[1-1023]" },
]

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-getattr(1), flux_attr_get(3)

man7

Misc.

	flux-broker-attributes(7)

	flux-jobtap-plugins(7)

flux-broker-attributes(7)

DESCRIPTION

Flux broker attributes are parameters that affect how different
broker systems behave. Attributes can be listed and manipulated
with flux-getattr(1), flux-setattr(1), and flux-lsattr(1).

The broker currently exports the following attributes:

SESSION ATTRIBUTES

	rank

	The rank of the local broker.

	size

	The number of broker ranks in the flux instance

	rundir

	A temporary directory available for scratch storage within the session.
By default, a temporary directory is created for each broker rank, but
if rundir is set on the command line, this directory may be shared by
all broker ranks running on the same node. If rundir is created by the
broker, it is removed during session exit.

	content.backing-path

	The path to the content backing store file(s). If this is set on the
broker command line, the backing store uses this path instead of
a temporary one, and content is preserved on instance exit.
If file exists, its content is imported into the instance.
If it doesn't exist, it is created.

TOPOLOGY ATTRIBUTES

	tbon.fanout

	Branching factor of the tree based overlay network.

	tbon.descendants

	Number of descendants "below" this node of the tree based
overlay network, not including this node.

	tbon.level

	The level of this node in the tree based overlay network.
Root is level 0.

	tbon.maxlevel

	The maximum level number in the tree based overlay network.
Maxlevel is 0 for a size=1 instance.

	tbon.endpoint

	The endpoint for the tree based overlay network to communicate over.

	tbon.zmqdebug

	If set to an non-zero integer value, 0MQ socket event logging is enabled,
if available. This is potentially useful for debugging overlay
connectivity problems. The attribute may not be changed during runtime.

	tbon.prefertcp

	If set to an integer value other than zero, and the broker is bootstrapping
with PMI, tcp:// endpoints will be used instead of ipc://, even if all
brokers are on a single node.

SOCKET ATTRIBUTES

	tbon.parent-endpoint

	The URI of the ZeroMQ endpoint this rank is connected to in the tree
based overlay network. This attribute will not be set on rank zero.

	local-uri

	The Flux URI that should be passed to flux_open(1) to establish
a connection to the local broker rank. By default, local-uri is
created as "local://<broker.rank>/local".

	parent-uri

	The Flux URI that should be passed to flux_open(1) to establish
a connection to the enclosing instance.

LOGGING ATTRIBUTES

	log-ring-used

	The number of log entries currently stored in the ring buffer.

	log-ring-size

	The maximum number of log entries that can be stored in the ring buffer.

	log-count

	The number of log entries ever stored in the ring buffer.

	log-forward-level

	Log entries at syslog(3) level at or below this value are forwarded
to rank zero for permanent capture.

	log-critical-level

	Log entries at syslog(3) level at or below this value are copied
to stderr on the logging rank, for capture by the enclosing instance.

	log-filename

	(rank zero only) If set, session log entries, as filtered by log-forward-level,
are directed to this file.

	log-stderr-mode

	If set to "leader" (default), broker rank 0 emits forwarded logs from
other ranks to stderr, subject to the constraints of log-forward-level
and log-stderr-level. If set to "local", each broker emits its own
logs to stderr, subject to the constraints of log-stderr-level.

	log-stderr-level

	Log entries at syslog(3) level at or below this value to stderr,
subject to log-stderr-mode.

	log-level

	Log entries at syslog(3) level at or below this value are stored
in the ring buffer.

CONTENT ATTRIBUTES

	content.acct-dirty

	The number of dirty cache entries on this rank.

	content.acct-entries

	The total number of cache entries on this rank.

	content.acct-size

	The estimated total size in bytes consumed by cache entries on
this rank, excluding overhead.

	content.acct-valid

	The number of valid cache entries on this rank.

	content.backing-module

	The selected backing store module, if any. This attribute is only
set on rank 0 where the content backing store is active.

	content.blob-size-limit

	The maximum size of a blob, the basic unit of content storage.

	content.flush-batch-count

	The current number of outstanding store requests, either to the
backing store (rank 0) or upstream (rank > 0).

	content.flush-batch-limit

	The maximum number of outstanding store requests that will be
initiated when handling a flush or backing store load operation.

	content.hash

	The selected hash algorithm, default sha1.

	content.purge-old-entry

	When the cache size footprint needs to be reduced, only consider
purging entries that are older than this number of seconds.

	content.purge-target-size

	If possible, the cache size purged periodically so that the total
size of the cache stays at or below this value.

WIREUP ATTRIBUTES

	hello.timeout

	The reduction timeout (in seconds) for the broker wireup protocol.
Before the timeout, a topology-based high water mark is applied
at each node of the tree based overlay network. After the timeout,
new wireup information is forwarded upstream without delay.
Set to 0 to disable the timeout.

	hello.hwm

	The reduction high water mark for the broker wireup protocol,
normally calculated based on the topology.
Set to 0 to disable the high water mark.

CONFIG ATTRIBUTES

	config.hostlist

	The rank-ordered hosts specified in the bootstrap section of
the Flux configuration. Hosts are listed in RFC29 hostlist format.

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-getattr(1), flux_attr_get(3)

flux-jobtap-plugins(7)

DESCRIPTION

The jobtap interface supports loading of builtin and external
plugins into the job manager broker module. These plugins can be used
to assign job priorities using algorithms other than the default,
assign job dependencies, aid in debugging of the flow of job states,
or generically extend the functionality of the job manager.

Jobtap plugins are defined using the Flux standard plugin format. Therefore
a jobtap plugin should export the single symbol: flux_plugin_init(),
from which calls to flux_plugin_add_handler(3) should be used to
register functions which will be called for the callback topic strings
described in the CALLBACK TOPICS section below.

Each callback function uses the Flux standard plugin callback form, e.g.:

int callback (flux_plugin_t *p,
 const char *topic,
 flux_plugin_arg_t *args,
 void *arg);

where p is the handle for the current jobtap plugin, topic is
the topic string for the currently invoked callback, args contains
a set of plugin arguments which may be unpacked with the
flux_plugin_arg_unpack(3) call, and arg is any opaque argument
passed along when registering the handler.

Multiple plugins may be loaded in the job-manager simultaneously. In this
case, all matching handlers are called in all loaded plugins in the order
in which they were loaded. For more information about loading plugins
see the CONFIGURATION section below or the flux-jobtap(1)
manpage.

JOBTAP PLUGIN NAMES

Jobtap plugins are loaded into the job-manager and referenced in the
output of flux jobtap list by file name. If a plugin is loaded by
a fully qualified path, the plugin name is shortened to the basename,
such that all dynamically loaded plugins have names such as
plugin-name.so.

Builtin plugins, on the other hand, are named with a leading .,
and are hidden in flux jobtap list, do not match the glob(7)
* or "all" keyword, etc. (similar to hidden filesystem files).
To list builtin plugins, use the -a, --all option to
flux jobtap list, and to remove them use the name explicitly or
include the leading . in any pattern.

A plugin may optionally assign a name with flux_plugin_set_name(3),
however this name is not displayed in flux jobtap list or used in
matching. The internal plugin name is only used as part of the service
name generated by flux_jobtap_service_register(), i.e. the service
name will be job-manager.<name>.<method>. If a plugin does not
set a name with flux_plugin_set_name(3), then the basename of the
plugin file will be used with the trailing .so removed.

JOBTAP PLUGIN ARGUMENTS

For job-specific callbacks, all job data is passed to the plugin via
the flux_plugin_arg_t *args, and return data is sent back to the
job manager via the same args. Incoming arguments may be unpacked
using flux_plugin_arg_unpack(3), e.g.:

rc = flux_plugin_arg_unpack (args, FLUX_PLUGIN_ARG_IN,
 "{s{s:o}, s:I}",
 "jobspec", "resources", &resources,
 "id", &id);

will unpack the resources section of jobspec and the jobid into
resources and id respectively.

The full list of available args includes the following:

	name

	type

	description

	jobspec

	o

	jobspec with environment redacted

	id

	I

	jobid

	state

	i

	current job state

	prev_state

	i

	previous state (job.state.* callbacks)

	userid

	i

	userid

	urgency

	i

	current urgency

	priority

	I

	current priority

	t_submit

	f

	submit timestamp in floating point seconds

	entry

	o

	posted eventlog entry, including context

Return arguments can be packed using the FLUX_PLUGIN_ARG_OUT and
optionally FLUX_PLUGIN_ARG_REPLACE flags. For example to return
a priority:

rc = flux_plugin_arg_pack (args, FLUX_PLUGIN_ARG_OUT,
 "{s:I}",
 "priority", (int64_t) priority);

While a job is pending, jobtap plugin callbacks may also add job
annotations by returning a value for the annotations key:

flux_plugin_arg_pack (args, FLUX_PLUGIN_ARG_OUT,
 "{s:{s:s}}",
 "annotations", "test", value);

CALLBACK TOPICS

The following callback "topic strings" are currently provided by the
jobtap interface:

	job.validate

	The job.validate topic allows a plugin to reject a job before
it is introduced to the job manager. A rejected job will result in
a job submission error in the submitting client, and any job data in
the KVS will be purged. No further callbacks will be made for rejected
jobs. Note: If a job is not rejected, then the job.new callback will
be invoked immediately after job.validate. This allows limits or
other validation to be implemented in the job.validate callback,
but accounting for those limits should be confined to the job.new
callback, since job.new may also be called during job-manager
restart or plugin reload.

	job.dependency.*

	The job.dependency.* topic allows a dependency plugin to notify the
job-manager that it handles a given dependency _scheme_. The job-manager
will scan the attirbutes.system.dependencies array, if provided, and
issue a job.dependency.SCHEME callback for each listed dependency.
If no plugin has registered for SCHEME, then the job is rejected.
The plugin should then call flux_jobtap_dependency_add(3) to add
a new named dependency to the job (if necessary). Jobs with dependencies
will remain in the DEPEND state until all dependencies are removed
with a corresponding call to flux_jobtap_dependency_remove(3). See
job.state.depend below for more information about dependencies.
If there is an error in the dependency specification, the job may be
rejected with flux_jobtap_reject_job(3) and a negative return code
from the callback.

	job.new

	The job.new topic is used by the job manager to notify a jobtap plugin
about a newly introduced job. This call may be made in three different
situations:

	on job job submission

	when the job manager is restarted and has reloaded a job from the KVS

	when a new jobtap plugin is loaded

In case 1 above, the job state will always be FLUX_JOB_STATE_NEW, while
jobs in cases 2 and 3 can be in any state except FLUX_JOB_STATE_INACTIVE.

	job.state.*

	The job.state.* callbacks are made just after a job state transition.
The callback is made after the state has been published to the job's
eventlog, but before any action has been taken on that state (since the
action could involve immediately transitioning to a new state)

	job.event.*

	The job.event.* callbacks are only made for plugins that have explicitly
subscribed to a job with flux_jobtap_job_subscribe(). In this case,
all job events result in this callback being invoked on all subscribed
plugins. This may be useful for plugins to get notification of events
that do not necessarily result in a state transition, e.g. the start
event or a non-fatal exception.

	job.state.depend

	The callback for FLUX_JOB_STATE_DEPEND is the final place from which
a plugin may add dependencies to a job. Dependencies are added via
the flux_jobtap_dependency_add() function. This function allows a
named dependency to be attached to a job. Jobs with dependencies will
remain in the DEPEND state until all dependencies are removed with
a corresponding call the flux_jobtap_dependency_remove(). A dependency
may only be used once. A second call to flux_jobtap_dependency_add()
with the same dependency description will return EEXIST, even if
the dependency was subsequently removed. (This allows idempotent operation
of plugin-managed dependencies for job-manager or plugin restart).

	job.state.priority

	The callback for FLUX_JOB_STATE_PRIORITY is special, in that a plugin
must return a priority at the end of the callback (if the plugin is
a priority-managing plugin). If the job priority is not available, the
plugin should use flux_jobtap_priority_unavail() to indicate
that the priority cannot be set. Jobs that do not have a priority due
to unavailable priority or when no current priority plugin is loaded will
remain in the PRIORITY state until a priority is assigned. Therefore,
a plugin should arrange for the priority to be set asynchronously using
flux_jobtap_reprioritize_job(). See the PRIORITY section
for more detailed information about plugin management of job priority.

	job.priority.get

	The job manager calls the job.priority.get topic whenever it wants
to update the job priority of a single job. The plugin should return a
priority immediately, but if one is not available when a job is in
the PRIORITY state, the plugin may use flux_jobtap_priority_unavail()
to indicate the priority is not available. Returning an unavailable
priority in the SCHED state is an error and it will be logged, but
otherwise ignored. A call of job.priority.get can be requested for
all jobs by calling flux_jobtap_reprioritize_all(). See the
PRIORITY section for more information about plugin management
of job priority.

PRIORITY

Custom assignment of job priority values is one of the core
features supported by the jobtap plugin interface. A builtin
.priority-default plugin is always loaded in the job-manager to
ensure that jobs move past the PRIORITY state when no other priority
plugin is loaded. The default plugin simply assigns the priority to
the same value as the current job urgency.

When loading a new jobtap plugin that assigns priority, it is important
to be cognizant of the fact that the .priority-default plugin may
still be loaded. This will result in the priority set in the return
arguments to always be initialized to the job urgency. However, since
plugin job.state.priority and job.priority.get callbacks are
run in order, any subsequently loaded plugin that assigns a priority
will overwrite the returned default priority and thus the last
loaded priority plugin will be active.

To ensure the default priority is always overridden priority plugins
should therefore make sure to always set a priority, or use
flux_jobtap_priority_unavail() if the priority is not available,
in any callback in which a priority is expected to be returned, i.e.
job.state.priority and job.priority.get.

To fully ensure priority plugins do not conflict, the builtin priority
plugin may explicitly be removed with

flux jobtap remove .priority-default

or via configuration (See CONFIGURATION below)

[job-manager]
plugins = [
 { remove = ".priority-default",
 load = "complex-priority.so"
 },
]

CONFIGURATION

Job-manager plugin configuration is defined in the job-manager.plugins
section of the Flux TOML configuration file. This section is an array of
plugin directives which include the following keys:

	load

	Load a plugin matching the given filename into the job-manager. If the
path is not absolute, then the first plugin matching the job-manager
searchpath will be loaded.

	conf

	With load only, pass an optional configuration table to the loaded plugin.

	remove

	Remove all plugins matching the value. The value may be a glob(7). If
remove appears with load, plugin removal is always handled first.
The special value all is a synonym for *, but will not error when
no plugins match.

For example

[job-manager]
plugins = [
 {
 load = "priority-custom.so",
 conf = {
 job-limit = 100,
 size-limit = 128
 }
 }
]

The list of loaded jobtap plugins may also be queried and controlled at
runtime with the flux-jobtap(1) command

RESOURCES

Github: http://github.com/flux-framework

SEE ALSO

flux-jobtap(1)

python

	flux package
	Subpackages
	flux.core package
	Submodules

	flux.job package
	Subpackages

	Submodules

	flux.resource package
	Submodules

	Submodules
	flux.constants module

	flux.debugged module

	flux.future module

	flux.hostlist module

	flux.idset module

	flux.kvs module

	flux.memoized_property module

	flux.message module

	flux.progress module

	flux.rpc module

	flux.security module

	flux.util module

	flux.wrapper module

flux package

python bindings to flux-core, the main core of the flux resource manager

	
flux.constants

	Used by autodoc_mock_imports.

	
flux.Flux(*args, **kwargs)

	

Subpackages

	flux.core package
	Submodules
	flux.core.handle module

	flux.core.inner module

	flux.core.trampoline module

	flux.core.watchers module

	flux.job package
	Subpackages
	flux.job.validator package
	Submodules
	flux.job.validator.validator module

	Submodules
	flux.job.JobID module

	flux.job.Jobspec module

	flux.job.event module

	flux.job.executor module

	flux.job.info module

	flux.job.kill module

	flux.job.kvs module

	flux.job.list module

	flux.job.stats module

	flux.job.submit module

	flux.job.wait module

	flux.resource package
	Submodules
	flux.resource.ResourceSet module

	flux.resource.ResourceSetImplementation module

	flux.resource.Rlist module

Submodules

	flux.constants module

	flux.debugged module

	flux.future module

	flux.hostlist module

	flux.idset module

	flux.kvs module

	flux.memoized_property module

	flux.message module

	flux.progress module

	flux.rpc module

	flux.security module

	flux.util module

	flux.wrapper module

flux.core package

Submodules

	flux.core.handle module

	flux.core.inner module

	flux.core.trampoline module

	flux.core.watchers module

flux.core.handle module

	
class flux.core.handle.Flux(url=<sphinx.ext.autodoc.importer._MockObject object>, flags=0, handle=None)

	Bases: flux.wrapper.Wrapper

The general Flux handle class, create one of these to connect to the
nearest enclosing flux instance

Example

>>> flux.Flux()
<flux.core.Flux object at 0x...>

	
attr_get(attr_name)

	

	
barrier(name, nprocs)

	

	
close()

	The underlying flux handle is automatically closed when a Flux instance is
deconstructed. Prevent users from manually closing, the handle, leading
to a double free.

	
event_create(topic, payload=None)

	Create a new event message.

	Parameters

	
	topic -- A string, the event's topic

	payload -- If a string, the payload is used unmodified, if it is
another type json.dumps() is used to stringify it

	
event_recv(topic=None)

	

	
event_send(topic, payload=None)

	Create and send a new event in one step

	
event_subscribe(topic)

	Subscribe to events

	Parameters

	topic (str, bytes, or unicode) -- The event's topic to subscribe to

	Raises

	
	EnvironmentError -- if the topic is None or NULL

	TypeError -- if the topic is not a str, bytes, or unicode

	
fd_watcher_create(fd_int, callback, events=None, args=None)

	

	
get_rank()

	

	
in_reactor()

	

	
log(level, fstring)

	Log to the flux logging facility

	Parameters

	
	level -- A syslog log-level, check the syslog module for possible
values

	fstring -- A string to log, C-style formatting is not supported

	
msg_watcher_create(callback, type_mask=<bound method Wrapper.__getattr__.<locals>.wrap_class of <flux.core.inner.Core object>>, topic_glob='*', args=None, match_tag=<bound method Wrapper.__getattr__.<locals>.wrap_class of <flux.core.inner.Core object>>)

	

	
classmethod raise_if_exception()

	Re-raise any class global exception if set

If a global exception is currently set for the Flux handle class,
re-raise it and reset the exception state to None.

The exception is raised from None to preserve the original
stack trace.

	
reactor_decref(reactor=None)

	

	
classmethod reactor_enter()

	

	
classmethod reactor_exit()

	

	
reactor_incref(reactor=None)

	

	
reactor_run(reactor=None, flags=0)

	Run reactor associated with this Flux handle or reactor argument
if it is provided. Sets a signal watcher for SIGINT to return
from the reactor on Ctrl-C, and raise KeyboardInterrupt.

	
classmethod reactor_running()

	Return True if this thread is running the Flux reactor

	
reactor_stop(reactor=None)

	

	
reactor_stop_error(reactor=None)

	

	
recv(type_mask=<bound method ? of <flux.core.inner.Core object>>, match_tag=<bound method ? of <flux.core.inner.Core object>>, topic_glob=None, flags=0)

	Receive a message, returns a flux.Message containing the result or None

	
respond(message, payload=None)

	Respond to a flux rpc

	Parameters

	
	message (Message) -- The message to respond to

	payload (None, str, bytes, unicode, or json-serializable) -- The (optional) payload to include in the response

	
rpc(topic, payload=None, nodeid=<bound method ? of <flux.core.inner.Core object>>, flags=0)

	Create a new RPC object

	
send(message, flags=0)

	Send a pre-constructed flux message

	
service_register(name)

	

	
service_unregister(name)

	

	
classmethod set_exception(exception)

	Set a global, per-thread exception for Flux

This class method allows Python callbacks called from the Flux
reactor to set a global exception which can be re-thrown after
the return to Python (when reactor_run() returns). This is
implemented as a class attribute since the Flux handle object
which is available in a Python callback from C will be a
different instantiation than the Flux handle object which
started the reactor (with the same underlying flux_t however)

	Parameters

	exception (Exception) -- A reference to the exception thrown.

	Returns

	The previously set exception, or None

	Return type

	Exception

	
signal_watcher_create(signum, callback, args=None)

	

	
timer_watcher_create(after, callback, repeat=0.0, args=None)

	

	
tls = <_thread._local object>

	

flux.core.inner module

	
class flux.core.inner.Core

	Bases: flux.wrapper.Wrapper

Generic Core wrapper, you probably do not want or need one of these.

	
FLUX_MATCHTAG_NONE(*args, **kwargs)

	

	
FLUX_MSGTYPE_ANY(*args, **kwargs)

	

	
FLUX_NODEID_ANY(*args, **kwargs)

	

	
flux_future_destroy(*args, **kwargs)

	

flux.core.trampoline module

	
flux.core.trampoline.mod_main_trampoline(name, int_handle, args)

	

flux.core.watchers module

	
class flux.core.watchers.TimerWatcher(flux_handle, after, callback, repeat=0, args=None)

	Bases: flux.core.watchers.Watcher

	
class flux.core.watchers.FDWatcher(flux_handle, fd_int, events, callback, args=None)

	Bases: flux.core.watchers.Watcher

	
class flux.core.watchers.SignalWatcher(flux_handle, signal_int, callback, args=None)

	Bases: flux.core.watchers.Watcher

flux.job package

Subpackages

	flux.job.validator package
	Submodules
	flux.job.validator.validator module

Submodules

	flux.job.JobID module

	flux.job.Jobspec module

	flux.job.event module

	flux.job.executor module

	flux.job.info module

	flux.job.kill module

	flux.job.kvs module

	flux.job.list module

	flux.job.stats module

	flux.job.submit module

	flux.job.wait module

flux.job.validator package

Submodules

	flux.job.validator.validator module

flux.job.validator.validator module

	
class flux.job.validator.validator.JobValidator(argv, pluginpath=None, parser=None)

	Bases: object

A plugin-based job validator class

JobValidator loads plugins that implenment the ValidatorPlugin interface
from the 'flux.job.validator.plugins' namespace. Plugins may be configured
at runtime by passing in a --plugins=LIST option

	
default_validators = ['jobspec']

	

	
plugin_namespace = 'flux.job.validator.plugins'

	

	
start()

	Select and configure plugins, start executor, etc.

	
validate(jobinfo)

	Validate jobinfo using all loaded validators

	Parameters

	jobinfo (ValidatorJobInfo) -- A ValidatorJobInfo object which
describes the job to be validated.

	Returns

	ValidatorResult

If any one validator plugin fails, then result will indicate
failure.

	
class flux.job.validator.validator.ValidatorJobInfo(jobinfo)

	Bases: object

An instance of a Flux job specification used by job validators

	
jobspec

	Submitted jobspec in Python dict form

	Type

	dict

	
userid

	Submitting user id

	Type

	int

	
flags

	Job flags supplied during submission

	Type

	int

	
urgency

	Job urgency

	Type

	int

	
flux

	On-demand, per-thread Flux handle

	Type

	Flux

	
tls = <_thread._local object>

	

	
class flux.job.validator.validator.ValidatorPlugin(parser)

	Bases: abc.ABC

Base class for Validator Plugins

	
configure(args)

	Configure a ValidatorPlugin. Run after argparse.parse_args()

	Parameters

	
	args (Namespace) -- The resulting Namespace after calling

	argparse.parse_args() --

	
validate(job)

	Validate a job. A ValidatorPlugin must implement this method

If a job fails validation, this method should either throw an
exception, which will be caught by the calling script, or a
(errnum, errmsg) tuple may optionally be returned, if that
is more convenient.

On success, this method should return nothing or explicitly:

(0, None)

	Parameters

	job (ValidatorJobInfo) -- the job to validate

	Returns

	None or (errnum, errmsg) tuple.

	
class flux.job.validator.validator.ValidatorResult

	Bases: object

Container for result or results from the JobValidator validate method

	
errmsg

	comma-separated string list of all error messages

	Type

	str

	
push_result(errnum, errmsg=None)

	Add a result from one validator to a ValidatorResult

	Parameters

	
	errnum (int) -- error number (0 for success)

	errmsg (str, optional) -- An optional error messsage for a
failed result.

	
success

	True if job validated successfully, False otherwise

	Type

	bool

	
flux.job.validator.validator.import_path(file_path)

	

	
flux.job.validator.validator.import_plugins(pkg_name, pluginpath=None)

	Load plugins from a namespace package and optional additional paths

A plugin in pluginpath with the same name as an existing plugin will
take precedence

	
flux.job.validator.validator.import_plugins_pkg(ns_pkg)

	Import all modules found in the namespace package ns_pkg

flux.job.JobID module

	
class flux.job.JobID.JobID

	Bases: int

Class used to represent a Flux JOBID

JobID is a subclass of int, so may be used in place of integer.
However, a JobID may be created from any valid RFC 19 FLUID
encoding, including:

	decimal integer (no prefix)

	hexidecimal integer (prefix 0x)

	dotted hex (dothex) (xxxx.xxxx.xxxx.xxxx)

	kvs dir (dotted hex with job. prefix)

	RFC19 F58: (Base58 encoding with prefix ƒ or f)

A JobID object also has properties for encoding a JOBID into each
of the above representations, e.g. jobid.f85, jobid.words, jobid.dothex...

	
dec

	Return decimal integer representation of a JobID

	
dothex

	Return dotted hexidecimal representation of a JobID

	
encode(encoding='dec')

	Encode a JobID to alternate supported format

	
f58

	Return RFC19 F58 representation of a JobID

	
hex

	Return 0x-prefixed hexidecimal representation of a JobID

	
kvs

	Return KVS directory path of a JobID

	
orig

	Return the original string used to create the JobID

	
words

	Return words (mnemonic) representation of a JobID

	
flux.job.JobID.id_encode(jobid, encoding='f58')

	returns: Jobid encoded in encoding
:rtype str

	
flux.job.JobID.id_parse(jobid_str)

	returns: An integer jobid
:rtype int

flux.job.Jobspec module

	
class flux.job.Jobspec.Jobspec(resources, tasks, **kwargs)

	Bases: object

	
attributes

	

	
cwd

	Get working directory of job.

	
dumps(**kwargs)

	

	
duration

	

	
environment

	Get (entire) environment of job.

	
classmethod from_yaml_file(filename)

	

	
classmethod from_yaml_stream(yaml_stream)

	

	
resource_counts()

	Compute the counts of each resource type in the jobspec

The following jobspec would return
{ "slot": 12, "core": 18, "memory": 242 }

- type: slot
 count: 2
 with:
 - type: core
 count: 4
 - type: memory
 count: 1
 unit: GB
- type: slot
 count: 10
 with:
 - type: core
 count: 1
 - type: memory
 count: 24
 unit: GB

Note

the current implementation ignores the unit label and assumes
they are consist across resources

	
resource_walk()

	Traverse the resources in the resources section of the jobspec.

Performs a depth-first, pre-order traversal. Yields a tuple containing
(parent, resource, count). parent is None when resource is a
top-level resource. count is the number of that resource including the
multiplicative effects of the with clause in ancestor resources. For
example, the following resource section, will yield a count of 2 for the
slot and a count of 8 for the core resource:

- type: slot
 count: 2
 with:
 - type: core
 count: 4

	
resources

	

	
setattr(key, val)

	set job attribute

	
setattr_shell_option(key, val)

	set job attribute: shell option

	
stderr

	

	
stdin

	

	
stdout

	

	
tasks

	

	
top_level_keys = {'attributes', 'resources', 'tasks', 'version'}

	

	
version

	

	
class flux.job.Jobspec.JobspecV1(resources, tasks, **kwargs)

	Bases: flux.job.Jobspec.Jobspec

	
classmethod from_batch_command(script, jobname, args=None, num_slots=1, cores_per_slot=1, gpus_per_slot=None, num_nodes=None, broker_opts=None)

	Create a Jobspec describing a nested Flux instance controlled by a script.

The nested Flux instance will execute the script with the given
command-line arguments after copying it and setting the executable bit.
Conceptually, this differs from the from_nest_command, which also creates a
nested Flux instance, in that it a) requires the initial program of the new
instance to be an executable text file and b) creates the initial program
from a string rather than using an executable existing somewhere on the
filesystem.

Use setters to assign additional properties.

	Parameters

	
	script -- contents of the script to execute, as a string. The
script should have a shebang (e.g. #!/bin/sh) at the top.

	jobname (str) -- name to use as the argv[0] for this job.
This will be the default job name reported by Flux.
(Note the actual argv is overridden by the job shell when executed.)

	args (iterable of str) -- arguments to pass to script

	num_slots -- number of resource slots to create. Slots are an abstraction,
and are only used (along with cores_per_slot and gpus_per_slot) to
determine the nested instance's allocation size and layout.

	cores_per_slot -- number of cores to allocate per slot

	gpus_per_slot -- number of GPUs to allocate per slot

	num_nodes -- distribute allocated resource slots across N individual nodes

	broker_opts (iterable of str) -- options to pass to the new Flux broker

	
classmethod from_command(command, num_tasks=1, cores_per_task=1, gpus_per_task=None, num_nodes=None)

	Factory function that builds the minimum legal v1 jobspec.

Use setters to assign additional properties.

	Parameters

	
	command (iterable of str) -- command to execute

	num_tasks -- number of MPI tasks to create

	cores_per_task -- number of cores to allocate per task

	gpus_per_task -- number of GPUs to allocate per task

	num_nodes -- distribute allocated tasks across N individual nodes

	
classmethod from_nest_command(command, num_slots=1, cores_per_slot=1, gpus_per_slot=None, num_nodes=None, broker_opts=None)

	Create a Jobspec describing a nested Flux instance controlled by command.

Conceptually, this differs from the from_batch_command method in that a)
the initial program of the nested Flux instance can be any executable
on the file system, not just a text file and b) the executable is not
copied at submission time.

Use setters to assign additional properties.

	Parameters

	
	command (iterable of str) -- initial program for the nested Flux instance

	num_slots -- number of resource slots to create. Slots are an abstraction,
and are only used (along with cores_per_slot and gpus_per_slot) to
determine the nested instance's allocation size and layout.

	cores_per_slot -- number of cores to allocate per slot

	gpus_per_slot -- number of GPUs to allocate per slot

	num_nodes -- distribute allocated resource slots across N individual nodes

	broker_opts (iterable of str) -- options to pass to the new Flux broker

	
flux.job.Jobspec.validate_jobspec(jobspec, require_version=None)

	Validates the jobspec by attempting to construct a Jobspec object. If no
exceptions are thrown during construction, then the jobspec is assumed to be
valid and this function returns True. If the jobspec is invalid, the
relevant exception is thrown (i.e., TypeError, ValueError, EnvironmentError)

By default, the validation function will read the version key in the
jobspec to determine which Jobspec object to instantiate. An optional
require_version is included to override this behavior and force a
particular class to be used.

	Parameters

	
	jobspec -- a Jobspec object or JSON string

	require_version -- jobspec version to use, if not provided,
the value of jobspec['version'] is used

	Raises

	
	ValueError --

	TypeError --

	EnvironmentError --

flux.job.event module

	
class flux.job.event.EventLogEvent(event)

	Bases: object

wrapper class for a single KVS EventLog entry

	
context

	

	
name

	

	
timestamp

	

	
class flux.job.event.JobEventWatchFuture(future_handle)

	Bases: flux.future.Future

A future returned from job.event_watch_async().
Adds get_event() method to return an EventLogEntry event

	
cancel()

	Cancel a streaming job.event_watch_async() future

	
get_event(autoreset=True)

	Return the next event from a JobEventWatchFuture, or None
if the event stream has terminated.

The future is auto-reset unless autoreset=False, so a subsequent
call to get_event() will try to fetch the next event and thus
may block.

	
exception flux.job.event.JobException(event)

	Bases: Exception

Represents an 'exception' event occurring to a job.

Instances expose a few public attributes.

	Variables

	
	timestamp -- the timestamp of the 'exception' event.

	type -- A string identifying the type of job exception.

	note -- Brief human-readable explanation of the exception.

	severity -- the severity of the exception. Exceptions with a severity
of 0 are fatal to the job; any other severity is non-fatal.

	
flux.job.event.event_wait(flux_handle, jobid, name, eventlog='eventlog', raiseJobException=True)

	Wait for a job eventlog entry 'name'

Wait synchronously for an eventlog entry named "name" and
return the entry to caller, raises OSError with ENODATA if
event never occurred

See also

	21/Job States and Events [https://flux-framework.readthedocs.io/projects/flux-rfc/en/latest/spec_21.html]

	Documentation for the events in the main eventlog

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID on which to wait for eventlog events

	name -- The event name for which to wait

	eventlog -- eventlog path in job kvs directory (default: eventlog)

	raiseJobException -- if True, watch for job exception events and
raise a JobException if one is seen before event 'name' (default=True)

	Returns

	an EventLogEntry object, or raises OSError if eventlog
ended before matching event was found

	Return type

	EventLogEntry

	
flux.job.event.event_watch(flux_handle, jobid, eventlog='eventlog')

	Python generator to watch all events for a job

Synchronously watch events a job eventlog via a simple generator.

Example

>>> for event in job.event_watch(flux_handle, jobid):
... # do something with event

See also

	21/Job States and Events [https://flux-framework.readthedocs.io/projects/flux-rfc/en/latest/spec_21.html]

	Documentation for the events in the main eventlog

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID on which to watch events

	eventlog -- eventlog path in job kvs directory (default: eventlog)

	
flux.job.event.event_watch_async(flux_handle, jobid, eventlog='eventlog')

	Asynchronously get eventlog updates for a job

Asynchronously watch the events of a job eventlog.

Returns a JobEventWatchFuture. Call .get_event() from the then
callback to get the currently returned event from the Future object.

See also

	21/Job States and Events [https://flux-framework.readthedocs.io/projects/flux-rfc/en/latest/spec_21.html]

	Documentation for the events in the main eventlog

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID on which to watch events

	eventlog -- eventlog path in job kvs directory (default: eventlog)

	Returns

	a JobEventWatchFuture object

	Return type

	JobEventWatchFuture

flux.job.executor module

This module defines the FluxExecutor and FluxExecutorFuture classes.

	
class flux.job.executor.FluxExecutor(threads=1, thread_name_prefix='', poll_interval=0.1, handle_args=(), handle_kwargs={})

	Bases: object

Provides a method to submit and monitor Flux jobs asynchronously.

Forks threads to complete futures and fetch event updates in the background.

Inspired by the concurrent.futures.Executor class, with the following
interface differences:

	the submit method takes a flux.job.Jobspec instead of a
callable and its arguments, and returns a FluxExecutorFuture
representing that job.

	the map method is not supported, given that the executor consumes
Jobspecs rather than callables.

Otherwise, the FluxExecutor is faithful to its inspiration. In addition
to methods and behavior defined by concurrent.futures, FluxExecutor
provides its futures with event updates and the jobid of the underlying job.

Futures returned by submit have their jobid set as soon as it is available,
which is always before the future completes.

The executor can also monitor existing jobs through the attach method,
which takes a job ID and returns a future representing the job.

Futures may receive event updates even after they complete. The names
of valid events are contained in the EVENTS class attribute.

The result of a future is the highest process exit status of the underlying job
(in which case the result is an integer greater than or equal to 0),
or -signum where signum is the number
of the signal that caused the process to terminate
(in which case the result is an integer less than 0).

A future is marked as "running" (and can no longer be canceled using the
.cancel() method) once it reaches a certain point in the Executor---a point
which is completely unrelated to the status of the underlying Flux job.
The underlying Flux job may still be canceled at any point before it terminates,
however, using the flux.job.cancel and flux.job.kill functions,
in which case a JobException will be set.

If the jobspec is invalid, an OSError is set.

	Parameters

	
	threads -- the number of worker threads to fork.

	thread_name_prefix -- used to control the names of threading.Thread
objects created by the executor, for easier debugging.

	poll_interval -- the interval (in seconds) in which to break out of the
flux event loop to check for new job submissions.

	handle_args -- positional arguments to the flux.Flux instances used by
the executor.

	handle_kwargs -- keyword arguments to the flux.Flux instances used by
the executor.

	
EVENTS = frozenset({'urgency', 'start', 'depend', 'flux-restart', 'clean', 'submit', 'priority', 'exception', 'finish', 'free', 'alloc', 'debug', 'release'})

	A set containing valid event names for attaching to futures.

	
attach(jobid)

	Attach a FluxExecutorFuture to an existing job ID and return it.

Returned futures will behave identically to futures returned by the
FluxExecutor.submit method. If the job ID is not accepted by Flux
an exception will be set on the future.

This method is primarily useful for monitoring jobs that have been
submitted through other mechanisms.

	Parameters

	jobid (int) -- jobid to attach to.

	Raises

	RuntimeError -- if shutdown has been called or if an error has
occurred and new jobs cannot be submitted (e.g. a remote Flux instance
can no longer be communicated with).

	
shutdown(wait=True, *, cancel_futures=False)

	Clean-up the resources associated with the Executor.

It is safe to call this method several times. Otherwise, no other
methods can be called after this one.

	Parameters

	
	wait -- If True, then this method will not return until all running
futures have finished executing and the resources used by the
executor have been reclaimed.

	cancel_futures -- If True, this method will cancel all pending
futures that the executor has not started running. Any futures that
are completed or running won't be cancelled, regardless of the value
of cancel_futures.

	
submit(*args, **kwargs)

	Submit a jobspec to Flux and return a FluxExecutorFuture.

Accepts the same positional and keyword arguments as flux.job.submit,
except for the flux.job.submit function's first argument, flux_handle.

	Parameters

	
	jobspec (Jobspec or its string encoding) -- jobspec defining the job request

	urgency (int) -- job urgency 0 (lowest) through 31 (highest)
(default is 16). Priorities 0 through 15 are restricted to
the instance owner.

	waitable (bool) -- allow result to be fetched with flux.job.wait()
(default is False). Waitable=True is restricted to the
instance owner.

	debug (bool) -- enable job manager debugging events to job eventlog
(default is False)

	pre_signed (bool) -- jobspec argument is already signed
(default is False)

	Raises

	RuntimeError -- if shutdown has been called or if an error has
occurred and new jobs cannot be submitted (e.g. a remote Flux instance
can no longer be communicated with).

	
class flux.job.executor.FluxExecutorFuture(owning_thread_id, *args, **kwargs)

	Bases: concurrent.futures._base.Future

A concurrent.futures.Future subclass that represents a single Flux job.

In addition to all of the concurrent.futures.Future functionality,
FluxExecutorFuture instances offer:

	The jobid and add_jobid_callback methods for retrieving the
Flux jobid of the underlying job.

	The add_event_callback method to invoke callbacks when particular
job-state events occur.

Valid events are contained in the EVENTS class attribute.

	
EVENTS = frozenset({'urgency', 'start', 'depend', 'flux-restart', 'clean', 'submit', 'priority', 'exception', 'finish', 'free', 'alloc', 'debug', 'release'})

	A set containing the names of valid events.

	
add_done_callback(*args, **kwargs)

	Attaches a callable that will be called when the future finishes.

	Parameters

	fn -- A callable that will be called with this future as its only
argument when the future completes or is cancelled. The callable
will always be called by a thread in the same process in which
it was added. If the future has already completed or been
cancelled then the callable will be called immediately. These
callables are called in the order that they were added.

	Returns

	self

	
add_event_callback(event, callback)

	Add a callback to be invoked when an event occurs.

The callback will be invoked, with the future as the first argument and the
flux.job.EventLogEvent as the second, whenever the event occurs. If the
event occurs multiple times, the callback will be invoked with each different
EventLogEvent instance. If the event never occurs, the callback
will never be invoked.

Added callables are called in the order that they were added and may be called
in another thread. If the callable raises an Exception subclass, it will
be logged and ignored. If the callable raises a BaseException subclass,
the behavior is undefined.

If the event has already occurred, the callback will be called immediately.

	Parameters

	
	event -- the name of the event to add the callback to.

	callback -- a callable taking the future and the event as arguments.

	Returns

	self

	
add_jobid_callback(callback)

	Attaches a callable that will be called when the jobid is ready.

Added callables are called in the order that they were added and may be called
in another thread. If the callable raises an Exception subclass, it will
be logged and ignored. If the callable raises a BaseException subclass,
the behavior is undefined.

	Parameters

	callback -- a callable taking the future as its only argument.

	Returns

	self

	
cancel(*args, **kwargs)

	Cancel the future if possible.

Returns True if the future was cancelled, False otherwise. A future
cannot be cancelled if it is running or has already completed.

	
exception(*args, **kwargs)

	Return the exception raised by the call that the future represents.

	Parameters

	timeout -- The number of seconds to wait for the exception if the
future isn't done. If None, then there is no limit on the wait
time.

	Returns

	The exception raised by the call that the future represents or None
if the call completed without raising.

	Raises

	
	CancelledError -- If the future was cancelled.

	TimeoutError -- If the future didn't finish executing before the given
timeout.

	
jobid(timeout=None)

	Return the jobid of the Flux job that the future represents.

	Parameters

	timeout -- The number of seconds to wait for the jobid.
If None, then there is no limit on the wait time.

	Returns

	a positive integer jobid.

	Raises

	
	concurrent.futures.TimeoutError -- If the jobid is not available
before the given timeout.

	concurrent.futures.CancelledError -- If the future was cancelled.

	RuntimeError -- If the job could not be submitted (e.g. if
the jobspec was invalid).

	
result(*args, **kwargs)

	Return the result of the call that the future represents.

	Parameters

	timeout -- The number of seconds to wait for the result if the future
isn't done. If None, then there is no limit on the wait time.

	Returns

	The result of the call that the future represents.

	Raises

	
	CancelledError -- If the future was cancelled.

	TimeoutError -- If the future didn't finish executing before the given
timeout.

	Exception -- If the call raised then that exception will be raised.

	
set_exception(exception)

	Sets the result of the future as being the given exception.

Should only be used by Executor implementations and unit tests.

flux.job.info module

	
class flux.job.info.AnnotationsInfo(annotationsDict)

	Bases: object

	
class flux.job.info.ExceptionInfo(occurred, severity, _type, note)

	Bases: object

	
class flux.job.info.InfoList

	Bases: list

Extend list with string representation appropriate for JobInfo format

	
class flux.job.info.JobInfo(info_resp)

	Bases: object

JobInfo class: encapsulate job-list.list response in an object
that implements a getattr interface to job information with
memoization. Better for use with output formats since results
are only computed as-needed.

	
defaults = {'expiration': 0.0, 'nnodes': '', 'nodelist': '', 'priority': '', 'ranks': '', 'result': '', 'success': '', 't_cleanup': 0.0, 't_depend': 0.0, 't_inactive': 0.0, 't_run': 0.0, 'waitstatus': ''}

	

	
get_remaining_time()

	

	
get_runtime()

	

	
result

	

	
result_abbrev

	

	
returncode

	The job return code if the job has exited, or an empty string
if the job is still active. The return code of a job is the
highest job shell exit code, or the negative signal number if the
job shell was terminated by a signal. For jobs that were canceled
before the RUN state, the return code will be set to -128.

	
runtime

	

	
state

	

	
state_single

	

	
status

	

	
status_abbrev

	

	
t_remaining

	

	
username

	

	
class flux.job.info.JobInfoFormat(fmt)

	Bases: flux.util.OutputFormat

Store a parsed version of an output format string for JobInfo objects,
allowing the fields to iterated without modifiers, building
a new format suitable for headers display, etc...

	
class HeaderFormatter

	Bases: flux.job.info.JobFormatter

Custom formatter for flux-jobs(1) header row.

Override default formatter behavior of calling getattr() on dotted
field names. Instead look up header literally in kwargs.
This greatly simplifies header name registration as well as
registration of "valid" fields.

	
get_field(field_name, args, kwargs)

	Override get_field() so we don't do the normal gettatr thing

	
class JobFormatter

	Bases: string.Formatter

	
convert_field(value, conv)

	Flux job-specific field conversions. Avoids the need
to create many different format field names to represent
different conversion types. (mainly used for time-specific
fields for now).

	
format_field(value, spec)

	

	
format(obj)

	format object with our JobFormatter

	
header()

	format header with custom HeaderFormatter

	
headings = {'annotations': 'ANNOTATIONS', 'annotations.sched.reason_pending': 'REASON', 'annotations.sched.resource_summary': 'RESOURCES', 'annotations.sched.t_estimate': 'T_ESTIMATE', 'dependencies': 'DEPENDENCIES', 'exception.note': 'EXCEPTION-NOTE', 'exception.occurred': 'EXCEPTION-OCCURRED', 'exception.severity': 'EXCEPTION-SEVERITY', 'exception.type': 'EXCEPTION-TYPE', 'expiration': 'EXPIRATION', 'id': 'JOBID', 'id.dec': 'JOBID', 'id.dothex': 'JOBID', 'id.f58': 'JOBID', 'id.hex': 'JOBID', 'id.kvs': 'JOBID', 'id.words': 'JOBID', 'name': 'NAME', 'nnodes': 'NNODES', 'nodelist': 'NODELIST', 'ntasks': 'NTASKS', 'priority': 'PRI', 'ranks': 'RANKS', 'result': 'RESULT', 'result_abbrev': 'RS', 'returncode': 'RC', 'runtime': 'RUNTIME', 'sched': 'SCHED', 'sched.reason_pending': 'REASON', 'sched.resource_summary': 'RESOURCES', 'sched.t_estimate': 'T_ESTIMATE', 'state': 'STATE', 'state_single': 'S', 'status': 'STATUS', 'status_abbrev': 'ST', 'success': 'SUCCESS', 't_cleanup': 'T_CLEANUP', 't_depend': 'T_DEPEND', 't_inactive': 'T_INACTIVE', 't_remaining': 'T_REMAINING', 't_run': 'T_RUN', 't_submit': 'T_SUBMIT', 'urgency': 'URG', 'user': 'USER', 'userid': 'UID', 'username': 'USER', 'waitstatus': 'WSTATUS'}

	

	
flux.job.info.fsd(secs)

	

	
flux.job.info.get_username(userid)

	

	
flux.job.info.resulttostr(resultid, singlechar=False)

	

	
flux.job.info.statetostr(stateid, singlechar=False)

	

	
flux.job.info.statustostr(stateid, resultid, abbrev=False)

	

flux.job.kill module

	
flux.job.kill.cancel(flux_handle: flux.core.handle.Flux, jobid: Union[flux.job.JobID.JobID, int], reason: Optional[str] = None)

	Cancel a pending or or running job

	Parameters

	
	flux_handle -- handle for Flux broker from flux.Flux()

	jobid -- the job ID of the job to cancel

	reason -- the textual reason associated with the cancelation

	
flux.job.kill.cancel_async(flux_handle: flux.core.handle.Flux, jobid: Union[flux.job.JobID.JobID, int], reason: Optional[str] = None)

	Cancel a pending or or running job asynchronously

	Parameters

	
	flux_handle -- handle for Flux broker from flux.Flux()

	jobid -- the job ID of the job to cancel

	reason -- the textual reason associated with the cancelation

	Returns

	a future fulfilled when the cancelation completes

	Return type

	Future

	
flux.job.kill.kill(flux_handle: flux.core.handle.Flux, jobid: Union[flux.job.JobID.JobID, int], signum: Optional[int] = None)

	Send a signal to a running job.

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID of the job to kill

	signum -- signal to send (default SIGTERM)

	
flux.job.kill.kill_async(flux_handle: flux.core.handle.Flux, jobid: Union[flux.job.JobID.JobID, int], signum: Optional[int] = None)

	Send a signal to a running job asynchronously

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID of the job to kill

	signum -- signal to send (default SIGTERM)

	Returns

	a Future

	Return type

	Future

flux.job.kvs module

	
flux.job.kvs.job_kvs(flux_handle, jobid)

	
	Returns

	The KVS directory of the given job

	Return type

	KVSDir

	
flux.job.kvs.job_kvs_guest(flux_handle, jobid)

	
	Returns

	The KVS guest directory of the given job

	Return type

	KVSDir

flux.job.list module

	
class flux.job.list.JobList(flux_handle, attrs=['userid', 'urgency', 'priority', 't_submit', 't_depend', 't_run', 't_cleanup', 't_inactive', 'state', 'name', 'ntasks', 'nnodes', 'ranks', 'nodelist', 'waitstatus', 'success', 'exception_occurred', 'exception_type', 'exception_severity', 'exception_note', 'result', 'expiration', 'annotations', 'dependencies'], filters=[], ids=[], user=None, max_entries=1000)

	Bases: object

User friendly class for querying lists of jobs from Flux

By default a JobList will query the last max_entries jobs for all
users. Other filter parameters can be passed to the constructor or
the set_user() and add_filter() methods.

	Flux_handle

	A Flux handle obtained from flux.Flux()

	Attrs

	Optional list of job attributes to fetch. (default is all attrs)

	Filters

	List of strings defining the results or states to filter. E.g.,
["pending", "running"].

	Ids

	List of jobids to return. Other filters are ignored if ids is
not empty.

	User

	Username or userid for which to fetch jobs. Default is all users.

	Max_entries

	Maximum number of jobs to return

	
RESULTS = {'canceled': <sphinx.ext.autodoc.importer._MockObject object>, 'completed': <sphinx.ext.autodoc.importer._MockObject object>, 'failed': <sphinx.ext.autodoc.importer._MockObject object>, 'timeout': <sphinx.ext.autodoc.importer._MockObject object>}

	

	
STATES = {'active': <sphinx.ext.autodoc.importer._MockObject object>, 'cleanup': <sphinx.ext.autodoc.importer._MockObject object>, 'depend': <sphinx.ext.autodoc.importer._MockObject object>, 'inactive': <sphinx.ext.autodoc.importer._MockObject object>, 'pending': <sphinx.ext.autodoc.importer._MockObject object>, 'priority': <sphinx.ext.autodoc.importer._MockObject object>, 'run': <sphinx.ext.autodoc.importer._MockObject object>, 'running': <sphinx.ext.autodoc.importer._MockObject object>, 'sched': <sphinx.ext.autodoc.importer._MockObject object>}

	

	
add_filter(fname)

	Append a state or result filter to JobList query

	
fetch_jobs()

	Initiate the JobList query to the Flux job-info module

JobList.fetch_jobs() returns a JobListRPC or JobListIdsFuture,
either of which will be fulfilled when the job data is available.

Once the Future has been fulfilled, a list of JobInfo objects
can be obtained via JobList.jobs(). If JobList.errors is non-empty,
then it will contain a list of errors returned via the query.

	
jobs()

	Synchronously fetch a list of JobInfo objects from JobList query

If the Future object returned by JobList.fetch_jobs has not yet been
fulfilled (e.g. is_ready() returns False), then this call may block.
Otherwise, returns a list of JobInfo objects for all jobs returned
from the underlying job listing RPC.

	
set_user(user)

	Only return jobs for user (may be a username or userid)

	
class flux.job.list.JobListIdRPC(*args, **kwargs)

	Bases: flux.rpc.RPC

	
get_job()

	

	
get_jobinfo()

	

	
class flux.job.list.JobListIdsFuture

	Bases: flux.future.WaitAllFuture

Simulate interface of JobListRPC for listing multiple jobids

	
get_jobinfos()

	get all successful results as list of JobInfo objects

Any errors are appended to self.errors.

	
get_jobs()

	get all successful results, appending errors into self.errors

	
class flux.job.list.JobListRPC(flux_handle, topic, payload=None, nodeid=<sphinx.ext.autodoc.importer._MockObject object>, flags=0)

	Bases: flux.rpc.RPC

	
get_jobinfos()

	

	
get_jobs()

	

	
flux.job.list.job_list(flux_handle, max_entries=1000, attrs=[], userid=1005, states=0, results=0)

	

	
flux.job.list.job_list_id(flux_handle, jobid, attrs=[])

	

	
flux.job.list.job_list_inactive(flux_handle, since=0.0, max_entries=1000, attrs=[], name=None)

	

flux.job.stats module

	
class flux.job.stats.JobStats(handle)

	Bases: object

Container for job statistics as returned by job-list.job-stats

	
depend

	Count of jobs current in DEPEND state

	
priority

	Count of jobs in PRIORITY state

	
sched

	Count of jobs in SCHED state

	
run

	Count of jobs in RUN state

	
cleanup

	Count of jobs in CLEANUP state

	
inactive

	Count of INACTIVE jobs

	
active

	Total number of active jobs (all states but INACTIVE)

	
failed

	Total number of jobs that did not exit with zero status

	
successful

	Total number of jobs completed with zero exit code

	
canceled

	Total number of jobs that were canceled

	
timeout

	Total number of jobs that timed out

	
pending

	Sum of "depend", "priority", and "sched"

	
running

	Sum of "run" and "cleanup"

	
update(callback=None, **kwargs)

	Asynchronously fetch job statistics and update this object.

Requires that the reactor for this handle be running in order to
process the result.

	Parameters

	
	callback -- Optional: a callback to call when asynchronous
update is complete.

	kwargs -- Optional: extra keyword arguments to pass to callback()

	
update_sync()

	Synchronously update job statistics

flux.job.submit module

	
class flux.job.submit.SubmitFuture(future_handle, prefixes=None, pimpl_t=None)

	Bases: flux.future.Future

	
get_id()

	

	
flux.job.submit.submit(flux_handle, jobspec, urgency=<sphinx.ext.autodoc.importer._MockObject object>, waitable=False, debug=False, pre_signed=False)

	Submit a job to Flux

Ask Flux to run a job, blocking until a job ID is assigned.

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobspec (Jobspec or its string encoding) -- jobspec defining the job request

	urgency (int) -- job urgency 0 (lowest) through 31 (highest)
(default is 16). Priorities 0 through 15 are restricted to
the instance owner.

	waitable (bool) -- allow result to be fetched with job.wait()
(default is False). Waitable=true is restricted to the
instance owner.

	debug (bool) -- enable job manager debugging events to job eventlog
(default is False)

	pre_signed (bool) -- jobspec argument is already signed
(default is False)

	Returns

	job ID

	Return type

	int

	
flux.job.submit.submit_async(flux_handle, jobspec, urgency=<sphinx.ext.autodoc.importer._MockObject object>, waitable=False, debug=False, pre_signed=False, novalidate=False)

	Ask Flux to run a job, without waiting for a response

Submit a job to Flux. This method returns immediately with a
Flux Future, which can be used obtain the job ID later.

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobspec (Jobspec or its string encoding) -- jobspec defining the job request

	urgency (int) -- job urgency 0 (lowest) through 31 (highest)
(default is 16). Priorities 0 through 15 are restricted to
the instance owner.

	waitable (bool) -- allow result to be fetched with job.wait()
(default is False). Waitable=True is restricted to the
instance owner.

	debug (bool) -- enable job manager debugging events to job eventlog
(default is False)

	pre_signed (bool) -- jobspec argument is already signed
(default is False)

	novalidate (bool) -- jobspec does not need to be validated.
(default is False) novalidate=True is restricted to the
instance owner.

	Returns

	a Flux Future object for obtaining the assigned jobid

	Return type

	Future

flux.job.wait module

	
class flux.job.wait.JobResultFuture(future_handle, prefixes=None, pimpl_t=None)

	Bases: flux.future.Future

Future fulfilled with a job "result"

Supports methods to return the result as either a raw dict or
flux.job.info.JobInfo object.

	
get_dict(*args, **kwargs)

	

	
get_info(*args, **kwargs)

	

	
class flux.job.wait.JobWaitFuture(future_handle, prefixes=None, pimpl_t=None)

	Bases: flux.future.Future

	
get_status()

	

	
class flux.job.wait.JobWaitResult(jobid, success, errstr)

	Bases: tuple

	
errstr

	Alias for field number 2

	
jobid

	Alias for field number 0

	
success

	Alias for field number 1

	
flux.job.wait.result(flux_handle, jobid, flags=0)

	Wait for a job to reach its terminal state and return job result

This function waits for job completion by watching the eventlog.
Because this function must process the eventlog, it is a little more
heavyweight than flux.job.wait.wait(). However, it may be used
for non-waitable jobs, jobs that have already completed, and works
multiple times on the same jobid.

This function will wait until the job result is available and returns
a flux.job.info.JobInfo object filled with the available information.

Note: The JobInfo object returned from this method is only capable
of computing a small subset of job information, including, but possibly
not limited to:

	id

	t_submit, t_run, t_cleanup

	returncode

	waitstatus

	runtime

	result

	result_id

	Parameters

	
	flux_handle (flux.Flux) -- handle for Flux broker

	jobid (flux.job.JobID) -- the jobid for which to fetch result

	Returns

	A limited JobInfo object which can be used to fetch
the final job result, returncode, etc.

	Return type

	JobInfo

	
flux.job.wait.result_async(flux_handle, jobid, flags=0)

	Wait for a job to reach its terminal state and return job result

This function waits for job completion by watching the eventlog.
Because this function must process the eventlog, it is a little more
heavyweight than flux.job.wait.wait_async(). However, it may
be used for non-waitable jobs, jobs that have already completed,
and works multiple times on the same jobid.

Once the eventlog terminal state is reached, the returned Future is
fulfilled with a set of information gleaned from the processed events,
including whether the job started running (in case it was canceled
before starting), any exception state, and the final exit code and
wait(2) status.

	Parameters

	
	flux_handle (flux.Flux) -- handle for Flux broker

	jobid (flux.job.JobID) -- the jobid for which to fetch result

	Returns

	A Future fulfilled with the job result.

	Return type

	JobResultFuture

	
flux.job.wait.wait(flux_handle, jobid=<sphinx.ext.autodoc.importer._MockObject object>)

	Wait for a job to complete

Submit a request to wait for job completion, blocking until a
response is received, then return the job status.

Only jobs submitted with waitable=True can be waited for.

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID to wait for (default is any waitable job)

	Returns

	job status, a tuple of: Job ID (int), success (bool),
and an error (string) if success=False

	Return type

	tuple

	
flux.job.wait.wait_async(flux_handle, jobid=<sphinx.ext.autodoc.importer._MockObject object>)

	Wait for a job to complete, asynchronously

Submit a request to wait for job completion. This method returns
immediately with a Flux Future, which can be used to process
the result later.

Only jobs submitted with waitable=True can be waited for.

	Parameters

	
	flux_handle (Flux) -- handle for Flux broker from flux.Flux()

	jobid -- the job ID to wait for (default is any waitable job)

	Returns

	a Flux Future object for obtaining the job result

	Return type

	Future

flux.resource package

Submodules

	flux.resource.ResourceSet module

	flux.resource.ResourceSetImplementation module

	flux.resource.Rlist module

flux.resource.ResourceSet module

	
class flux.resource.ResourceSet.ResourceSet(arg=None, version=1)

	Bases: object

	
append(*args)

	Append a ResourceSet to another

	
copy()

	Return a copy of a ResourceSet

	
count(name)

	Return a count of resource objects within a ResourceSet

	Parameters

	name -- The name of the object to count, e.g. "core"

	
diff(*args)

	

	
dumps()

	Return a short-form, human-readable string of a ResourceSet object

	
encode()

	Encode a ResourceSet object to its serialized string representation

	
intersect(*args)

	

	
ncores

	

	
ngpus

	

	
nnodes

	

	
nodelist

	Return a flux.hostlist.Hostlist containing the list of hosts in
this ResourceSet

	
ranks

	Return a flux.idset.IDset containing the set of ranks in this
ResourceSet

	
remove_ranks(ranks)

	Remove the rank or ranks specified from the ResourceSet

	Parameters

	ranks -- A flux.idset.IDset object, or number or string which
can be converted into an IDset, containing the ranks
to remove

	
rlist

	

	
state

	An optional state associated with this ResourceSet (e.g. "up")

	
union(*args)

	

flux.resource.ResourceSetImplementation module

	
class flux.resource.ResourceSetImplementation.ResourceSetImplementation

	Bases: abc.ABC

This abstract class defines the interface that a ResourceSet
implementation shall provide in order to work with the ResourceSet
class

	
append(rset)

	Append one resource set to another

	
copy()

	Return a copy of the resource set

	
count(name)

	Return the total number of resources of type 'name'

	
diff(rset)

	Return the set difference of two resource sets

	
dumps()

	Return a short-form string representation of a resource set

	
encode()

	Return a JSON string representation of the resource set

	
intersect(rset)

	Return the set intersection of two resource sets

	
nnodes()

	Return the number of nodes in the resource set as an IDset

	
nodelist()

	Return the list of nodes in the resource set as a Hostlist

	
ranks()

	Return the set of ranks in the resource set as an IDset

	
remove_ranks(ranks)

	Remove an IDset of ranks from a resource set

	
union(rset)

	Return the union of two resource sets

flux.resource.Rlist module

	
class flux.resource.Rlist.Rlist(rstring=None, handle=None)

	Bases: flux.wrapper.WrapperPimpl

	
class InnerWrapper(rstring=None, handle=None)

	Bases: flux.wrapper.Wrapper

	
add_child(rank, name, ids)

	

	
add_rank(rank, hostname=None, cores='0')

	

	
append(arg)

	

	
copy()

	

	
count(name)

	

	
diff(arg)

	

	
dumps()

	

	
encode()

	

	
intersect(arg)

	

	
nnodes()

	

	
nodelist()

	

	
ranks(hosts=None)

	

	
remap()

	

	
remove_ranks(ranks)

	

	
union(arg)

	

	
version = 1

	

flux.constants module

Used by autodoc_mock_imports.

flux.debugged module

	
flux.debugged.get_mpir_being_debugged()

	

	
flux.debugged.set_mpir_being_debugged(value)

	

flux.future module

	
class flux.future.Future(future_handle, prefixes=None, pimpl_t=None)

	Bases: flux.wrapper.WrapperPimpl

A wrapper for interfaces that create and consume flux futures

	
class InnerWrapper(handle=None, match=<sphinx.ext.autodoc.importer._MockObject object>, filter_match=True, prefixes=None, destructor=<bound method ? of <flux.core.inner.Core object>>)

	Bases: flux.wrapper.Wrapper

	
check_wrap(fun, name)

	

	
error_string()

	

	
get(*args, **kwargs)

	

	
get_flux()

	

	
get_reactor()

	

	
incref()

	

	
is_ready()

	

	
reset()

	

	
then(callback, *args, timeout=-1.0, **kwargs)

	

	
wait_for(*args, **kwargs)

	

	
class flux.future.WaitAllFuture(children=None)

	Bases: flux.future.Future

Create a composite future which waits for all children to be fulfilled

	
push(child, name=None)

	

	
flux.future.continuation_callback(c_future, opaque_handle)

	

flux.hostlist module

	
class flux.hostlist.Hostlist(arg='', handle=None)

	Bases: flux.wrapper.WrapperPimpl

A Flux hostlist object

The Hostlist class wraps libflux-hostlist to implement a list
of hosts which can be converted to and from the RFC 29 hostlist
encoding.

	
class InnerWrapper(handle=None)

	Bases: flux.wrapper.Wrapper

	
append(*args)

	Append one or more arguments to a Hostlist

Args may be either a Hostlist or any valid argument to Hostlist()

	
copy()

	Copy a Hostlist object

	
count()

	Return the number of hosts in Hostlist

	
delete(hosts)

	Delete host or hosts from Hostlist

param: hosts: A Hostlist or string in RFC 29 hostlist encoding

	
encode()

	Encode a Hostlist to an RFC 29 hostlist string

	
expand()

	Convert a Hostlist to a Python list

	
sort()

	Sort a Hostlist

	
uniq()

	Sort and remove duplicate hostnames from Hostlist

	
class flux.hostlist.HostlistIterator(hostlist)

	Bases: object

	
flux.hostlist.decode(arg)

	Decode a string or iterable of strings in RFC 29 hostlist format
to a Hostlist object

flux.idset module

	
class flux.idset.IDset(arg='', flags=<sphinx.ext.autodoc.importer._MockObject object>, handle=None)

	Bases: flux.wrapper.WrapperPimpl

A Flux idset object

The IDset class wraps libflux-idset, and encapsulates a set of
unordered non-negative integers. See idset_create(3).

A Python IDset object may be created from a valid RFC22 idset string,
e.g. "0", "0-3", "0,5,7", or any Python iterable type as long as the
iterable contains only non-negative integers. For example:

>>> ids = IDset("0-3")
>>> ids2 = IDset([0, 1, 2, 3])
>>> ids3 = IDset({0, 1, 2, 3})

	
class InnerWrapper(arg='', handle=None)

	Bases: flux.wrapper.Wrapper

	
add(arg)

	Add all ids or values in arg to IDset
:param: arg: IDset, string, or iterable of integers to add

	
static arg_to_set(arg, method)

	

	
clear(start, end=None)

	Clear an id or range of ids in an IDset
:param: start: The first id to clear
:param: end: (optional) The last id in a range to clear

Returns a copy of self so that this will work:
>>> print(IDset("0-9").clear(0,3))

	
copy()

	

	
count()

	Return the number of integers in an IDset

	
encode(flags=None)

	Encode an IDset to a string.
:param: flags: (optional) flags to influence encoding

	
equal(idset)

	

	
expand()

	Expand an IDset into a list of integers

	
first()

	Return the first id set in an IDset

	
intersect(*args)

	Return the set intersection of the target IDset and all args

All args will be converted to IDsets if possible, i.e. any IDset,
valid idset string, or iterable composed of integers will work.

	
last()

	Return the greatest id set in an IDset

	
next(i)

	Return the next id set in an IDset after value i

	
set(start, end=None)

	Set an id or range of ids in an IDset
:param: start: The first id to set
:param: end: (optional) The last id in a range to set

Returns a copy of self so that this will work:
>>> print(IDset().set(0,3))

	
set_flags(flags)

	Set default flags for IDset encoding:
valid flags are IDSET_FLAG_RANGE and IDSET_FLAG_BRACKETS

	
subtract(arg)

	subtract all ids or values in arg from IDset
:param: arg: IDset, string, or iterable of integers to subtract

	
test(i)

	Test if an id is set in an IDset
:param: i: the id to test

	
union(*args)

	Return the union of the current IDset and all args

All args will be converted to IDsets if possible, i.e. any IDset,
valid idset string, or iterable composed of integers will work.

	
class flux.idset.IDsetIterator(idset)

	Bases: object

	
flux.idset.decode(string)

	Decode an idset string and return IDset object

flux.kvs module

	
class flux.kvs.KVSDir(flux_handle=None, path='.', handle=None)

	Bases: flux.wrapper.WrapperPimpl, collections.abc.MutableMapping

	
class InnerWrapper(flux_handle=None, path='.', handle=None)

	Bases: flux.wrapper.Wrapper

	
class KVSDirIterator(kvsdir)

	Bases: collections.abc.Iterator

	
next()

	

	
commit(flags=0) → int

	

	
directories()

	

	
exists(name)

	

	
files()

	

	
fill(contents: Mapping[str, Any])

	Populate this directory with keys specified by contents

	Parameters

	contents -- A dict of keys and values to be created in the directory
or None, sub-directories can be created by using dir.file
syntax, sub-dicts will be stored as json values in a single key

	
key_at(key)

	

	
list_all()

	

	
mkdir(key: str, contents: Mapping[str, Any] = None)

	Create a new sub-directory, optionally pre-populated with the
contents of files as would be done with fill(contents)

	Parameters

	
	key -- Key of the directory to be created

	contents -- A dict of keys and values to be created in the directory
or None, sub-directories can be created by using dir.file
syntax, sub-dicts will be stored as json values in a single key

	
class flux.kvs.KVSWrapper(ffi, lib, handle=None, match=None, filter_match=True, prefixes=(), destructor=None)

	Bases: flux.wrapper.Wrapper

	
flux_kvsitr_next(*args, **kwargs)

	

	
flux.kvs.commit(flux_handle, flags: int = 0) → int

	

	
flux.kvs.dropcache(flux_handle)

	

	
flux.kvs.exists(flux_handle, key)

	

	
flux.kvs.get(flux_handle, key)

	

	
flux.kvs.get_dir(flux_handle, key='.')

	

	
flux.kvs.get_key_direct(flux_handle, key)

	

	
flux.kvs.inner_walk(kvsdir, curr_dir, topdown=False)

	

	
flux.kvs.isdir(flux_handle, key)

	

	
flux.kvs.join(*args)

	

	
flux.kvs.put(flux_handle, key, value)

	

	
flux.kvs.put_mkdir(flux_handle, key)

	

	
flux.kvs.put_symlink(flux_handle, key, target)

	

	
flux.kvs.put_unlink(flux_handle, key)

	

	
flux.kvs.walk(directory, topdown=False, flux_handle=None)

	Walk a directory in the style of os.walk()

flux.memoized_property module

	
flux.memoized_property.memoized_property(fget)

	Return a property attribute for new-style classes that only calls its
getter on the first access. The result is stored and on subsequent
accesses is returned, preventing the need to call the getter any more.

Example

>>> class C(object):
... load_name_count = 0
... @memoized_property
... def name(self):
... "name's docstring"
... self.load_name_count += 1
... return "the name"
>>> c = C()
>>> c.load_name_count
0
>>> c.name
"the name"
>>> c.load_name_count
1
>>> c.name
"the name"
>>> c.load_name_count
1

flux.message module

	
class flux.message.Message(type_id=<sphinx.ext.autodoc.importer._MockObject object>, handle=None, destruct=False)

	Bases: flux.wrapper.WrapperPimpl

Flux message wrapper class.

	
class InnerWrapper(type_id=<sphinx.ext.autodoc.importer._MockObject object>, handle=None, destruct=False)

	Bases: flux.wrapper.Wrapper

	
classmethod from_event_encode(topic, payload=None)

	

	
payload

	

	
payload_str

	

	
topic

	

	
type

	

	
type_str

	

	
class flux.message.MessageWatcher(flux_handle, type_mask, callback, topic_glob='*', match_tag=<sphinx.ext.autodoc.importer._MockObject object>, args=None)

	Bases: flux.core.watchers.Watcher

	
destroy()

	

	
start()

	

	
stop()

	

	
flux.message.msg_typestr(msg_type)

	

flux.progress module

	
class flux.progress.Bottombar(formatter=None, **kwargs)

	Bases: object

Maintain a status line at bottom of terminal using vt100 escape codes

The Bottombar class implements a very simple status line which stays
positioned at the last line of vt100 capable terminals through the
use of vt100 escape codes.

This class will only work propertly on vt100 compatible terminals, which
includes xterm, rxvt, and gnome-terminal and their derivatives on Linux,
as well as iTerm and Terminal on OSX, and reportedly the new Windows
Terminal on Windows.

Use of Bottombar requires that a formatter function be provided.
The formatter will be called on each update as:

formatter(bbar, width)

Where bbar is the bottombar object being formatted and width is
the current terminal width at the time of the update. The default
formatter will simply print all extra

As a convenience, the Bottombar constructor collects all extra keyword
arguments and presents them as attributes on the Bottombar object for
later access from within and outside the provided formatter, e.g:

def formatter(bb, width):
 text = f"iteration={bb.i}"
 return text + time.ctime().rjust(width - len(text))

bb = Bottombar(formatter, i=0).start()
for i in range(0, 128):
 bb.update(i=i)
 time.sleep(.05)
bb.stop()

will print a statusbar with an iteration count left justified, and the
current time right justified.

	
elapsed

	The elapsed time since bb.start() in floating
point seconds. As a convenience, bb.elapsed may be converted
to a datetime.timedelta object via the dt attribute,
e.g. bb.elapsed.dt.

	Type

	float

	Parameters

	
	formatter (function) -- Function which returns the status string

	kwargs -- all extra keyword arguments are collected in the Bottombar
instance and made available as attributes for convenience

	
redraw()

	Redraw bar without update

	
start()

	Start drawing a Bottombar

	
stop()

	Reset terminal and write final bottombar state with newline

	
update(**kwargs)

	Update keyword args and redraw a bottombar

	
class flux.progress.ElapsedTime

	Bases: float

An ElapsedTime object is a floating point elapsed time in seconds
that comes with a convenient "dt" proerty that returns a
datetime.timedelta object

	
dt

	

	
class flux.progress.ProgressBar(total=100, style='vertbars', before='', after=' {percent:5.1f}%', autostop=False, **kwargs)

	Bases: flux.progress.Bottombar

Simple progress bar that stays on last line of terminal

The ProgressBar class uses the features of Bottombar to create a
progress bar, plus optional other text, which stays on the last line
of a terminal. A vt100 compatible terminal is required.

	Parameters

	
	total (int) -- The total expected number of items/units for which
the progressbar is monitoring progress, default=100.

	style (str, optional) -- A string progress bar style from the list
"line", "bar", "dots", "steps", "vertbars".

	before (str, optional) -- A string to place before the progress bar.

	after (str, optional) -- A string to place after the progress bar.
default=" {percent:5.1f}%"

	autostop (bool, optional) -- If True, ProgressBar instance will be
automatically stopped when count == total.
Otherwise, terminal reset will be deferred
to an atexit handler.

	kwargs (optional) -- Extra keyword args are saved and passed as args
when formatting the before and after
strings.

The before and after strings are formatted on each update to
the progressbar and passed all extra keyword args, plus the current
total, count, percent, and elapsed time e.g.:

before_str = before.format(
 total=total,
 count=count,
 percent=percent,
 elapsed=elapsed,
 **kwargs
)

which means that these strings are most useful when they are format
strings, e.g.:

ProgressBar(before="Running {total} jobs, {percent}% complete: ")

	
bar_style = {'bar': '─█', 'dots': '⣀⣄⣤⣦⣶⣷⣿', 'line': '─━', 'steps': ' ▁▂▃▄▅▆▇█', 'vertbars': ' ▏▎▍▌▋▊▉█'}

	

	
update(advance=1, **kwargs)

	Update the state of a ProgressBar

Update the state of a ProgressBar and redraw if the progress bar is
currently running. If count == total and autostop is set, the
progress bar will be automatically stopped.

When the progress bar is stopped, the terminal will be reset and
the final state of the bar will be left on the last line of output.

	Parameters

	
	advance (int, optional) -- Advance progress by advance amount.

	kwargs -- Update stored keyword arguments

flux.rpc module

	
class flux.rpc.RPC(flux_handle, topic, payload=None, nodeid=<sphinx.ext.autodoc.importer._MockObject object>, flags=0)

	Bases: flux.future.Future

An RPC state object

	
class RPCInnerWrapper(handle=None, match=<sphinx.ext.autodoc.importer._MockObject object>, filter_match=True, prefixes=None, destructor=<bound method Wrapper.__getattr__.<locals>.wrap_class of <flux.core.inner.Core object>>)

	Bases: flux.wrapper.Wrapper

	
check_wrap(fun, name)

	

	
get()

	

	
get_str(*args, **kwargs)

	

flux.security module

	
class flux.security.SecurityContext(config_pattern=None, flags=0)

	Bases: flux.wrapper.WrapperPimpl

A Flux Security Context object

	
class InnerWrapper(flags=0)

	Bases: flux.wrapper.Wrapper

	
check_wrap(fun, name)

	

	
sign_unwrap(signed_payload, flags=0)

	

	
sign_wrap(payload, mech_type=<sphinx.ext.autodoc.importer._MockObject object>, flags=0)

	

	
sign_wrap_as(userid, payload, mech_type=<sphinx.ext.autodoc.importer._MockObject object>, flags=0)

	

	
class flux.security.SecurityFunctionWrapper(fun, name, function_type, ffi, add_handle=False)

	Bases: flux.wrapper.FunctionWrapper

flux.util module

	
flux.util.check_future_error(func)

	

	
flux.util.encode_payload(payload)

	

	
flux.util.encode_topic(topic)

	

	
class flux.util.CLIMain(logger=None)

	Bases: object

	
flux.util.parse_fsd(fsd_string)

	

flux.wrapper module

Flux interface wrapper generator.
This could, in principle, be used for other projects as well, but it encodes a
number of assumptions about the error propagation and handling that flux uses.

	
class flux.wrapper.ErrorPrinter(name, prefixes)

	Bases: object

	
class flux.wrapper.FunctionWrapper(fun, name, function_type, ffi, add_handle=False)

	Bases: object

	
build_argument_translation_list(fun_type)

	

	
set_error_check(fun)

	

	
exception flux.wrapper.InvalidArguments(name, signature, arguments)

	Bases: ValueError

	
exception flux.wrapper.MissingFunctionError(name, c_name, name_list, arguments)

	Bases: Exception

	
class flux.wrapper.Wrapper(ffi, lib, handle=None, match=None, filter_match=True, prefixes=(), destructor=None)

	Bases: flux.wrapper.WrapperBase

Forms a wrapper around an interface that dynamically searches for undefined
names, and can detect and pass a handle argument of specified type when it
is found in the signature of an un-specified target function.

	
check_handle(name, fun_type)

	

	
check_wrap(fun, name)

	

	
handle

	

	
class flux.wrapper.WrapperBase

	Bases: object

	
handle

	

	
class flux.wrapper.WrapperPimpl

	Bases: flux.wrapper.WrapperBase

	
handle

	

	
exception flux.wrapper.WrongNumArguments(name, signature, ftype, arguments, htype)

	Bases: ValueError

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flux	

 	
 	
 flux.constants	

 	
 	
 flux.core	

 	
 	
 flux.core.handle	

 	
 	
 flux.core.inner	

 	
 	
 flux.core.trampoline	

 	
 	
 flux.core.watchers	

 	
 	
 flux.debugged	

 	
 	
 flux.future	

 	
 	
 flux.hostlist	

 	
 	
 flux.idset	

 	
 	
 flux.job	

 	
 	
 flux.job.event	

 	
 	
 flux.job.executor	

 	
 	
 flux.job.info	

 	
 	
 flux.job.JobID	

 	
 	
 flux.job.Jobspec	

 	
 	
 flux.job.kill	

 	
 	
 flux.job.kvs	

 	
 	
 flux.job.list	

 	
 	
 flux.job.stats	

 	
 	
 flux.job.submit	

 	
 	
 flux.job.validator	

 	
 	
 flux.job.validator.validator	

 	
 	
 flux.job.wait	

 	
 	
 flux.kvs	

 	
 	
 flux.memoized_property	

 	
 	
 flux.message	

 	
 	
 flux.progress	

 	
 	
 flux.resource	

 	
 	
 flux.resource.ResourceSet	

 	
 	
 flux.resource.ResourceSetImplementation	

 	
 	
 flux.resource.Rlist	

 	
 	
 flux.rpc	

 	
 	
 flux.security	

 	
 	
 flux.util	

 	
 	
 flux.wrapper	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	active (flux.job.stats.JobStats attribute)

 	add() (flux.idset.IDset method)

 	add_child() (flux.resource.Rlist.Rlist method)

 	add_done_callback() (flux.job.executor.FluxExecutorFuture method)

 	add_event_callback() (flux.job.executor.FluxExecutorFuture method)

 	add_filter() (flux.job.list.JobList method)

 	add_jobid_callback() (flux.job.executor.FluxExecutorFuture method)

 	add_rank() (flux.resource.Rlist.Rlist method)

 	
 	AnnotationsInfo (class in flux.job.info)

 	append() (flux.hostlist.Hostlist method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	arg_to_set() (flux.idset.IDset static method)

 	attach() (flux.job.executor.FluxExecutor method)

 	attr_get() (flux.core.handle.Flux method)

 	attributes (flux.job.Jobspec.Jobspec attribute)

B

 	
 	bar_style (flux.progress.ProgressBar attribute)

 	barrier() (flux.core.handle.Flux method)

 	
 	Bottombar (class in flux.progress)

 	build_argument_translation_list() (flux.wrapper.FunctionWrapper method)

C

 	
 	cancel() (flux.job.event.JobEventWatchFuture method)

 	(flux.job.executor.FluxExecutorFuture method)

 	(in module flux.job.kill)

 	cancel_async() (in module flux.job.kill)

 	canceled (flux.job.stats.JobStats attribute)

 	check_future_error() (in module flux.util)

 	check_handle() (flux.wrapper.Wrapper method)

 	check_wrap() (flux.future.Future.InnerWrapper method)

 	(flux.rpc.RPC.RPCInnerWrapper method)

 	(flux.security.SecurityContext.InnerWrapper method)

 	(flux.wrapper.Wrapper method)

 	cleanup (flux.job.stats.JobStats attribute)

 	clear() (flux.idset.IDset method)

 	CLIMain (class in flux.util)

 	close() (flux.core.handle.Flux method)

 	commit() (flux.kvs.KVSDir method)

 	(in module flux.kvs)

 	
 	configure() (flux.job.validator.validator.ValidatorPlugin method)

 	constants (in module flux)

 	context (flux.job.event.EventLogEvent attribute)

 	continuation_callback() (in module flux.future)

 	convert_field() (flux.job.info.JobInfoFormat.JobFormatter method)

 	copy() (flux.hostlist.Hostlist method)

 	(flux.idset.IDset method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	Core (class in flux.core.inner)

 	count() (flux.hostlist.Hostlist method)

 	(flux.idset.IDset method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	cwd (flux.job.Jobspec.Jobspec attribute)

D

 	
 	dec (flux.job.JobID.JobID attribute)

 	decode() (in module flux.hostlist)

 	(in module flux.idset)

 	default_validators (flux.job.validator.validator.JobValidator attribute)

 	defaults (flux.job.info.JobInfo attribute)

 	delete() (flux.hostlist.Hostlist method)

 	depend (flux.job.stats.JobStats attribute)

 	destroy() (flux.message.MessageWatcher method)

 	diff() (flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	
 	directories() (flux.kvs.KVSDir method)

 	dothex (flux.job.JobID.JobID attribute)

 	dropcache() (in module flux.kvs)

 	dt (flux.progress.ElapsedTime attribute)

 	dumps() (flux.job.Jobspec.Jobspec method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	duration (flux.job.Jobspec.Jobspec attribute)

E

 	
 	elapsed (flux.progress.Bottombar attribute)

 	ElapsedTime (class in flux.progress)

 	encode() (flux.hostlist.Hostlist method)

 	(flux.idset.IDset method)

 	(flux.job.JobID.JobID method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	encode_payload() (in module flux.util)

 	encode_topic() (in module flux.util)

 	environment (flux.job.Jobspec.Jobspec attribute)

 	equal() (flux.idset.IDset method)

 	errmsg (flux.job.validator.validator.ValidatorResult attribute)

 	error_string() (flux.future.Future method)

 	ErrorPrinter (class in flux.wrapper)

 	errstr (flux.job.wait.JobWaitResult attribute)

 	
 	event_create() (flux.core.handle.Flux method)

 	event_recv() (flux.core.handle.Flux method)

 	event_send() (flux.core.handle.Flux method)

 	event_subscribe() (flux.core.handle.Flux method)

 	event_wait() (in module flux.job.event)

 	event_watch() (in module flux.job.event)

 	event_watch_async() (in module flux.job.event)

 	EventLogEvent (class in flux.job.event)

 	EVENTS (flux.job.executor.FluxExecutor attribute)

 	(flux.job.executor.FluxExecutorFuture attribute)

 	exception() (flux.job.executor.FluxExecutorFuture method)

 	ExceptionInfo (class in flux.job.info)

 	exists() (flux.kvs.KVSDir method)

 	(in module flux.kvs)

 	expand() (flux.hostlist.Hostlist method)

 	(flux.idset.IDset method)

F

 	
 	f58 (flux.job.JobID.JobID attribute)

 	failed (flux.job.stats.JobStats attribute)

 	fd_watcher_create() (flux.core.handle.Flux method)

 	FDWatcher (class in flux.core.watchers)

 	fetch_jobs() (flux.job.list.JobList method)

 	files() (flux.kvs.KVSDir method)

 	fill() (flux.kvs.KVSDir method)

 	first() (flux.idset.IDset method)

 	flags (flux.job.validator.validator.ValidatorJobInfo attribute)

 	Flux (class in flux.core.handle)

 	flux (flux.job.validator.validator.ValidatorJobInfo attribute)

 	(module)

 	Flux() (in module flux)

 	flux.constants (module)

 	flux.core (module)

 	flux.core.handle (module)

 	flux.core.inner (module)

 	flux.core.trampoline (module)

 	flux.core.watchers (module)

 	flux.debugged (module)

 	flux.future (module)

 	flux.hostlist (module)

 	flux.idset (module)

 	flux.job (module)

 	flux.job.event (module)

 	flux.job.executor (module)

 	flux.job.info (module)

 	flux.job.JobID (module)

 	flux.job.Jobspec (module)

 	flux.job.kill (module)

 	flux.job.kvs (module)

 	flux.job.list (module)

 	flux.job.stats (module)

 	flux.job.submit (module)

 	
 	flux.job.validator (module)

 	flux.job.validator.validator (module)

 	flux.job.wait (module)

 	flux.kvs (module)

 	flux.memoized_property (module)

 	flux.message (module)

 	flux.progress (module)

 	flux.resource (module)

 	flux.resource.ResourceSet (module)

 	flux.resource.ResourceSetImplementation (module)

 	flux.resource.Rlist (module)

 	flux.rpc (module)

 	flux.security (module)

 	flux.util (module)

 	flux.wrapper (module)

 	flux_future_destroy() (flux.core.inner.Core method)

 	flux_kvsitr_next() (flux.kvs.KVSWrapper method)

 	FLUX_MATCHTAG_NONE() (flux.core.inner.Core method)

 	FLUX_MSGTYPE_ANY() (flux.core.inner.Core method)

 	FLUX_NODEID_ANY() (flux.core.inner.Core method)

 	FluxExecutor (class in flux.job.executor)

 	FluxExecutorFuture (class in flux.job.executor)

 	format() (flux.job.info.JobInfoFormat method)

 	format_field() (flux.job.info.JobInfoFormat.JobFormatter method)

 	from_batch_command() (flux.job.Jobspec.JobspecV1 class method)

 	from_command() (flux.job.Jobspec.JobspecV1 class method)

 	from_event_encode() (flux.message.Message class method)

 	from_nest_command() (flux.job.Jobspec.JobspecV1 class method)

 	from_yaml_file() (flux.job.Jobspec.Jobspec class method)

 	from_yaml_stream() (flux.job.Jobspec.Jobspec class method)

 	fsd() (in module flux.job.info)

 	FunctionWrapper (class in flux.wrapper)

 	Future (class in flux.future)

 	Future.InnerWrapper (class in flux.future)

G

 	
 	get() (flux.future.Future method)

 	(flux.rpc.RPC method)

 	(in module flux.kvs)

 	get_dict() (flux.job.wait.JobResultFuture method)

 	get_dir() (in module flux.kvs)

 	get_event() (flux.job.event.JobEventWatchFuture method)

 	get_field() (flux.job.info.JobInfoFormat.HeaderFormatter method)

 	get_flux() (flux.future.Future method)

 	get_id() (flux.job.submit.SubmitFuture method)

 	get_info() (flux.job.wait.JobResultFuture method)

 	get_job() (flux.job.list.JobListIdRPC method)

 	get_jobinfo() (flux.job.list.JobListIdRPC method)

 	
 	get_jobinfos() (flux.job.list.JobListIdsFuture method)

 	(flux.job.list.JobListRPC method)

 	get_jobs() (flux.job.list.JobListIdsFuture method)

 	(flux.job.list.JobListRPC method)

 	get_key_direct() (in module flux.kvs)

 	get_mpir_being_debugged() (in module flux.debugged)

 	get_rank() (flux.core.handle.Flux method)

 	get_reactor() (flux.future.Future method)

 	get_remaining_time() (flux.job.info.JobInfo method)

 	get_runtime() (flux.job.info.JobInfo method)

 	get_status() (flux.job.wait.JobWaitFuture method)

 	get_str() (flux.rpc.RPC method)

 	get_username() (in module flux.job.info)

H

 	
 	handle (flux.wrapper.Wrapper attribute)

 	(flux.wrapper.WrapperBase attribute)

 	(flux.wrapper.WrapperPimpl attribute)

 	header() (flux.job.info.JobInfoFormat method)

 	
 	headings (flux.job.info.JobInfoFormat attribute)

 	hex (flux.job.JobID.JobID attribute)

 	Hostlist (class in flux.hostlist)

 	Hostlist.InnerWrapper (class in flux.hostlist)

 	HostlistIterator (class in flux.hostlist)

I

 	
 	id_encode() (in module flux.job.JobID)

 	id_parse() (in module flux.job.JobID)

 	IDset (class in flux.idset)

 	IDset.InnerWrapper (class in flux.idset)

 	IDsetIterator (class in flux.idset)

 	import_path() (in module flux.job.validator.validator)

 	import_plugins() (in module flux.job.validator.validator)

 	import_plugins_pkg() (in module flux.job.validator.validator)

 	in_reactor() (flux.core.handle.Flux method)

 	inactive (flux.job.stats.JobStats attribute)

 	
 	incref() (flux.future.Future method)

 	InfoList (class in flux.job.info)

 	inner_walk() (in module flux.kvs)

 	intersect() (flux.idset.IDset method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	InvalidArguments

 	is_ready() (flux.future.Future method)

 	isdir() (in module flux.kvs)

J

 	
 	job_kvs() (in module flux.job.kvs)

 	job_kvs_guest() (in module flux.job.kvs)

 	job_list() (in module flux.job.list)

 	job_list_id() (in module flux.job.list)

 	job_list_inactive() (in module flux.job.list)

 	JobEventWatchFuture (class in flux.job.event)

 	JobException

 	JobID (class in flux.job.JobID)

 	jobid (flux.job.wait.JobWaitResult attribute)

 	jobid() (flux.job.executor.FluxExecutorFuture method)

 	JobInfo (class in flux.job.info)

 	JobInfoFormat (class in flux.job.info)

 	JobInfoFormat.HeaderFormatter (class in flux.job.info)

 	JobInfoFormat.JobFormatter (class in flux.job.info)

 	
 	JobList (class in flux.job.list)

 	JobListIdRPC (class in flux.job.list)

 	JobListIdsFuture (class in flux.job.list)

 	JobListRPC (class in flux.job.list)

 	JobResultFuture (class in flux.job.wait)

 	jobs() (flux.job.list.JobList method)

 	Jobspec (class in flux.job.Jobspec)

 	jobspec (flux.job.validator.validator.ValidatorJobInfo attribute)

 	JobspecV1 (class in flux.job.Jobspec)

 	JobStats (class in flux.job.stats)

 	JobValidator (class in flux.job.validator.validator)

 	JobWaitFuture (class in flux.job.wait)

 	JobWaitResult (class in flux.job.wait)

 	join() (in module flux.kvs)

K

 	
 	key_at() (flux.kvs.KVSDir method)

 	kill() (in module flux.job.kill)

 	kill_async() (in module flux.job.kill)

 	kvs (flux.job.JobID.JobID attribute)

 	
 	KVSDir (class in flux.kvs)

 	KVSDir.InnerWrapper (class in flux.kvs)

 	KVSDir.KVSDirIterator (class in flux.kvs)

 	KVSWrapper (class in flux.kvs)

L

 	
 	last() (flux.idset.IDset method)

 	
 	list_all() (flux.kvs.KVSDir method)

 	log() (flux.core.handle.Flux method)

M

 	
 	memoized_property() (in module flux.memoized_property)

 	Message (class in flux.message)

 	Message.InnerWrapper (class in flux.message)

 	MessageWatcher (class in flux.message)

 	
 	MissingFunctionError

 	mkdir() (flux.kvs.KVSDir method)

 	mod_main_trampoline() (in module flux.core.trampoline)

 	msg_typestr() (in module flux.message)

 	msg_watcher_create() (flux.core.handle.Flux method)

N

 	
 	name (flux.job.event.EventLogEvent attribute)

 	ncores (flux.resource.ResourceSet.ResourceSet attribute)

 	next() (flux.idset.IDset method)

 	(flux.kvs.KVSDir.KVSDirIterator method)

 	ngpus (flux.resource.ResourceSet.ResourceSet attribute)

 	
 	nnodes (flux.resource.ResourceSet.ResourceSet attribute)

 	nnodes() (flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	nodelist (flux.resource.ResourceSet.ResourceSet attribute)

 	nodelist() (flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

O

 	
 	orig (flux.job.JobID.JobID attribute)

P

 	
 	parse_fsd() (in module flux.util)

 	payload (flux.message.Message attribute)

 	payload_str (flux.message.Message attribute)

 	pending (flux.job.stats.JobStats attribute)

 	plugin_namespace (flux.job.validator.validator.JobValidator attribute)

 	priority (flux.job.stats.JobStats attribute)

 	
 	ProgressBar (class in flux.progress)

 	push() (flux.future.WaitAllFuture method)

 	push_result() (flux.job.validator.validator.ValidatorResult method)

 	put() (in module flux.kvs)

 	put_mkdir() (in module flux.kvs)

 	put_symlink() (in module flux.kvs)

 	put_unlink() (in module flux.kvs)

R

 	
 	raise_if_exception() (flux.core.handle.Flux class method)

 	ranks (flux.resource.ResourceSet.ResourceSet attribute)

 	ranks() (flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	reactor_decref() (flux.core.handle.Flux method)

 	reactor_enter() (flux.core.handle.Flux class method)

 	reactor_exit() (flux.core.handle.Flux class method)

 	reactor_incref() (flux.core.handle.Flux method)

 	reactor_run() (flux.core.handle.Flux method)

 	reactor_running() (flux.core.handle.Flux class method)

 	reactor_stop() (flux.core.handle.Flux method)

 	reactor_stop_error() (flux.core.handle.Flux method)

 	recv() (flux.core.handle.Flux method)

 	redraw() (flux.progress.Bottombar method)

 	remap() (flux.resource.Rlist.Rlist method)

 	remove_ranks() (flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	reset() (flux.future.Future method)

 	resource_counts() (flux.job.Jobspec.Jobspec method)

 	resource_walk() (flux.job.Jobspec.Jobspec method)

 	
 	resources (flux.job.Jobspec.Jobspec attribute)

 	ResourceSet (class in flux.resource.ResourceSet)

 	ResourceSetImplementation (class in flux.resource.ResourceSetImplementation)

 	respond() (flux.core.handle.Flux method)

 	result (flux.job.info.JobInfo attribute)

 	result() (flux.job.executor.FluxExecutorFuture method)

 	(in module flux.job.wait)

 	result_abbrev (flux.job.info.JobInfo attribute)

 	result_async() (in module flux.job.wait)

 	RESULTS (flux.job.list.JobList attribute)

 	resulttostr() (in module flux.job.info)

 	returncode (flux.job.info.JobInfo attribute)

 	Rlist (class in flux.resource.Rlist)

 	rlist (flux.resource.ResourceSet.ResourceSet attribute)

 	Rlist.InnerWrapper (class in flux.resource.Rlist)

 	RPC (class in flux.rpc)

 	rpc() (flux.core.handle.Flux method)

 	RPC.RPCInnerWrapper (class in flux.rpc)

 	run (flux.job.stats.JobStats attribute)

 	running (flux.job.stats.JobStats attribute)

 	runtime (flux.job.info.JobInfo attribute)

S

 	
 	sched (flux.job.stats.JobStats attribute)

 	SecurityContext (class in flux.security)

 	SecurityContext.InnerWrapper (class in flux.security)

 	SecurityFunctionWrapper (class in flux.security)

 	send() (flux.core.handle.Flux method)

 	service_register() (flux.core.handle.Flux method)

 	service_unregister() (flux.core.handle.Flux method)

 	set() (flux.idset.IDset method)

 	set_error_check() (flux.wrapper.FunctionWrapper method)

 	set_exception() (flux.core.handle.Flux class method)

 	(flux.job.executor.FluxExecutorFuture method)

 	set_flags() (flux.idset.IDset method)

 	set_mpir_being_debugged() (in module flux.debugged)

 	set_user() (flux.job.list.JobList method)

 	setattr() (flux.job.Jobspec.Jobspec method)

 	setattr_shell_option() (flux.job.Jobspec.Jobspec method)

 	shutdown() (flux.job.executor.FluxExecutor method)

 	sign_unwrap() (flux.security.SecurityContext method)

 	sign_wrap() (flux.security.SecurityContext method)

 	sign_wrap_as() (flux.security.SecurityContext method)

 	signal_watcher_create() (flux.core.handle.Flux method)

 	SignalWatcher (class in flux.core.watchers)

 	sort() (flux.hostlist.Hostlist method)

 	
 	start() (flux.job.validator.validator.JobValidator method)

 	(flux.message.MessageWatcher method)

 	(flux.progress.Bottombar method)

 	state (flux.job.info.JobInfo attribute)

 	(flux.resource.ResourceSet.ResourceSet attribute)

 	state_single (flux.job.info.JobInfo attribute)

 	STATES (flux.job.list.JobList attribute)

 	statetostr() (in module flux.job.info)

 	status (flux.job.info.JobInfo attribute)

 	status_abbrev (flux.job.info.JobInfo attribute)

 	statustostr() (in module flux.job.info)

 	stderr (flux.job.Jobspec.Jobspec attribute)

 	stdin (flux.job.Jobspec.Jobspec attribute)

 	stdout (flux.job.Jobspec.Jobspec attribute)

 	stop() (flux.message.MessageWatcher method)

 	(flux.progress.Bottombar method)

 	submit() (flux.job.executor.FluxExecutor method)

 	(in module flux.job.submit)

 	submit_async() (in module flux.job.submit)

 	SubmitFuture (class in flux.job.submit)

 	subtract() (flux.idset.IDset method)

 	success (flux.job.validator.validator.ValidatorResult attribute)

 	(flux.job.wait.JobWaitResult attribute)

 	successful (flux.job.stats.JobStats attribute)

T

 	
 	t_remaining (flux.job.info.JobInfo attribute)

 	tasks (flux.job.Jobspec.Jobspec attribute)

 	test() (flux.idset.IDset method)

 	then() (flux.future.Future method)

 	timeout (flux.job.stats.JobStats attribute)

 	timer_watcher_create() (flux.core.handle.Flux method)

 	TimerWatcher (class in flux.core.watchers)

 	
 	timestamp (flux.job.event.EventLogEvent attribute)

 	tls (flux.core.handle.Flux attribute)

 	(flux.job.validator.validator.ValidatorJobInfo attribute)

 	top_level_keys (flux.job.Jobspec.Jobspec attribute)

 	topic (flux.message.Message attribute)

 	type (flux.message.Message attribute)

 	type_str (flux.message.Message attribute)

U

 	
 	union() (flux.idset.IDset method)

 	(flux.resource.ResourceSet.ResourceSet method)

 	(flux.resource.ResourceSetImplementation.ResourceSetImplementation method)

 	(flux.resource.Rlist.Rlist method)

 	uniq() (flux.hostlist.Hostlist method)

 	update() (flux.job.stats.JobStats method)

 	(flux.progress.Bottombar method)

 	(flux.progress.ProgressBar method)

 	
 	update_sync() (flux.job.stats.JobStats method)

 	urgency (flux.job.validator.validator.ValidatorJobInfo attribute)

 	userid (flux.job.validator.validator.ValidatorJobInfo attribute)

 	username (flux.job.info.JobInfo attribute)

V

 	
 	validate() (flux.job.validator.validator.JobValidator method)

 	(flux.job.validator.validator.ValidatorPlugin method)

 	validate_jobspec() (in module flux.job.Jobspec)

 	ValidatorJobInfo (class in flux.job.validator.validator)

 	
 	ValidatorPlugin (class in flux.job.validator.validator)

 	ValidatorResult (class in flux.job.validator.validator)

 	version (flux.job.Jobspec.Jobspec attribute)

 	(flux.resource.Rlist.Rlist attribute)

W

 	
 	wait() (in module flux.job.wait)

 	wait_async() (in module flux.job.wait)

 	wait_for() (flux.future.Future method)

 	WaitAllFuture (class in flux.future)

 	walk() (in module flux.kvs)

 	
 	words (flux.job.JobID.JobID attribute)

 	Wrapper (class in flux.wrapper)

 	WrapperBase (class in flux.wrapper)

 	WrapperPimpl (class in flux.wrapper)

 	WrongNumArguments

 A NODESET is a comma separated list of integer ranks. Ranks may be
listed individually or as a range in the form l-k where l < k.

Some examples of nodesets.

	``1''

	rank 1

	``0-3''

	ranks 0, 1, 2, and 3 listed in a range

	``0,1,2,3''

	ranks 0, 1, 2, and 3 listed individually

	``2,5''

	ranks 2 and 5

	``2,4-5''

	ranks 2, 4, and 5

As a special case, the string ``all'' can be specified to indicate every
rank available in the flux instance.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Documentation for flux-core

 		
 man1

 		
 flux-broker(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-content(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 BACKING STORE

 		
 CACHE EXPIRATION

 		
 CACHE ACCOUNTING

 		
 CACHE SEMANTICS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-cron(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 EXTRA OPTIONS

 		
 OPERATION

 		
 TASK EXECUTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-dmesg(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-env(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 flux-event(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 RESOURCES

 		
 flux-exec(1)

 		
 SYNOPSIS

 		
 flux-getattr(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-hwloc(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 NODESET FORMAT

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-job(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 CANCEL

 		
 SIGNAL

 		
 EXCEPTION

 		
 RESOURCES

 		
 flux-jobs(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 JOB STATUS

 		
 OUTPUT FORMAT

 		
 EXAMPLES

 		
 RESOURCES

 		
 flux-jobtap(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-keygen(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-kvs(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 RESOURCES

 		
 flux-logger(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-mini(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 JOB PARAMETERS

 		
 STANDARD I/O

 		
 DEPENDENCIES

 		
 ENVIRONMENT

 		
 ENV RULES

 		
 EXIT STATUS

 		
 OTHER OPTIONS

 		
 BULKSUBMIT

 		
 SHELL OPTIONS

 		
 RESOURCES

 		
 flux-module(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 STATS OPTIONS

 		
 DEBUG OPTIONS

 		
 LIST OUTPUT

 		
 MODULE SYMBOLS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-ping(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 EXAMPLES

 		
 RESOURCES

 		
 flux-proxy(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 EXAMPLES

 		
 RESOURCES

 		
 flux-start(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 VERBOSITY LEVELS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-shell(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 OPERATION

 		
 PLUGINS

 		
 JOBSPEC OPTIONS

 		
 SHELL INITRC

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-version(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 flux(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 SUB-COMMAND ENVIRONMENT

 		
 RESOURCES

 		
 man3

 		
 flux_attr_get(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_aux_set(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_child_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_content_load(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_core_version(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_event_decode(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 ENCODING JSON PAYLOADS

 		
 DECODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_event_publish(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 CONFIRMATION SEMANTICS

 		
 FLAGS

 		
 ENCODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_event_subscribe(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 flux_fatal_set(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_fd_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_flags_set(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_future_and_then(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_future_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 REACTOR CONTEXTS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_future_get(3)

 		
 SYNOPSIS

 		
 OVERVIEW

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_future_wait_all_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_get_rank(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_get_reactor(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_handle_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_idle_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_commit(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_copy(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 CAVEATS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_getroot(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_lookup(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_namespace_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_kvs_txn_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 FLAGS

 		
 ENCODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_log(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 MAPPING TO SYSLOG

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_msg_cmp(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_msg_encode(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_msg_handler_addvec(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_msg_handler_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 CAVEATS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_open(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 flux_periodic_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_pollevents(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_reactor_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_watcher_now(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_recv(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_request_decode(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 DECODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_request_encode(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_requeue(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_respond(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 STREAMING SERVICES

 		
 ENCODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_response_decode(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_rpc(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 REQUEST OPTIONS

 		
 RESPONSE OPTIONS

 		
 PREMATURE DESTRUCTION

 		
 CANCELLATION

 		
 ENCODING JSON PAYLOADS

 		
 DECODING JSON PAYLOADS

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_send(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_shell_add_completion_ref(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_shell_add_event_context(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_add_event_handler(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_aux_set(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_shell_current_task(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_get_flux(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLE

 		
 RESOURCES

 		
 flux_shell_get_info(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 SEE ALSO

 		
 RESOURCES

 		
 flux_shell_get_jobspec_info(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 SEE ALSO

 		
 RESOURCES

 		
 flux_shell_getenv(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_getopt(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_killall(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_log(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS:

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_shell_plugstack_call(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS:

 		
 RESOURCES

 		
 flux_shell_rpc_pack(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_service_register(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_shell_task_channel_subscribe(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_task_get_info(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_shell_task_subprocess(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 flux_signal_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_stat_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_sync_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 EXAMPLE

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_timer_watcher_create(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_watcher_start(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RESOURCES

 		
 SEE ALSO

 		
 idset_create(3)

 		
 SYNOPSIS

 		
 USAGE

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 idset_encode(3)

 		
 SYNOPSIS

 		
 USAGE

 		
 DESCRIPTION

 		
 FLAGS

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 idset_add(3)

 		
 SYNOPSIS

 		
 USAGE

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 ERRORS

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux_jobtap_get_flux(3)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 RETURN VALUE

 		
 RESOURCES

 		
 SEE ALSO

 		
 man5

 		
 flux-config-bootstrap(5)

 		
 DESCRIPTION

 		
 CONFIG FILES

 		
 KEYWORDS

 		
 COMPACT HOSTS

 		
 EXAMPLE

 		
 RESOURCES

 		
 SEE ALSO

 		
 man7

 		
 flux-broker-attributes(7)

 		
 DESCRIPTION

 		
 SESSION ATTRIBUTES

 		
 TOPOLOGY ATTRIBUTES

 		
 SOCKET ATTRIBUTES

 		
 LOGGING ATTRIBUTES

 		
 CONTENT ATTRIBUTES

 		
 WIREUP ATTRIBUTES

 		
 CONFIG ATTRIBUTES

 		
 RESOURCES

 		
 SEE ALSO

 		
 flux-jobtap-plugins(7)

 		
 DESCRIPTION

 		
 JOBTAP PLUGIN NAMES

 		
 JOBTAP PLUGIN ARGUMENTS

 		
 CALLBACK TOPICS

 		
 PRIORITY

 		
 CONFIGURATION

 		
 RESOURCES

 		
 SEE ALSO

 		
 python

 		
 flux package

 		
 Subpackages

 		
 Submodules

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

